You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
5.1 KiB
5.1 KiB
The simplest way of simply using YOLOv8 directly in a Python environment.
!!! example "Train"
=== "From pretrained(recommended)"
```python
from ultralytics import YOLO
model = YOLO("yolov8n.pt") # pass any model type
model.train(epochs=5)
```
=== "From scratch"
```python
from ultralytics import YOLO
model = YOLO("yolov8n.yaml")
model.train(data="coco128.yaml", epochs=5)
```
=== "Resume"
```python
# TODO: Resume feature is under development and should be released soon.
model = YOLO("last.pt")
model.train(resume=True)
```
!!! example "Val"
=== "Val after training"
```python
from ultralytics import YOLO
model = YOLO("yolov8n.yaml")
model.train(data="coco128.yaml", epochs=5)
model.val() # It'll automatically evaluate the data you trained.
```
=== "Val independently"
```python
from ultralytics import YOLO
model = YOLO("model.pt")
# It'll use the data yaml file in model.pt if you don't set data.
model.val()
# or you can set the data you want to val
model.val(data="coco128.yaml")
```
!!! example "Predict"
=== "From source"
```python
from ultralytics import YOLO
from PIL import Image
import cv2
model = YOLO("model.pt")
# accepts all formats - image/dir/Path/URL/video/PIL/ndarray. 0 for webcam
results = model.predict(source="0")
results = model.predict(source="folder", show=True) # Display preds. Accepts all YOLO predict arguments
# from PIL
im1 = Image.open("bus.jpg")
results = model.predict(source=im1, save=True) # save plotted images
# from ndarray
im2 = cv2.imread("bus.jpg")
results = model.predict(source=im2, save=True, save_txt=True) # save predictions as labels
# from list of PIL/ndarray
results = model.predict(source=[im1, im2])
```
=== "Results usage"
```python
# results would be a list of Results object including all the predictions by default
# but be careful as it could occupy a lot memory when there're many images,
# especially the task is segmentation.
# 1. return as a list
results = model.predict(source="folder")
# results would be a generator which is more friendly to memory by setting stream=True
# 2. return as a generator
results = model.predict(source=0, stream=True)
for result in results:
# detection
result.boxes.xyxy # box with xyxy format, (N, 4)
result.boxes.xywh # box with xywh format, (N, 4)
result.boxes.xyxyn # box with xyxy format but normalized, (N, 4)
result.boxes.xywhn # box with xywh format but normalized, (N, 4)
result.boxes.conf # confidence score, (N, 1)
result.boxes.cls # cls, (N, 1)
# segmentation
result.masks.masks # masks, (N, H, W)
result.masks.segments # bounding coordinates of masks, List[segment] * N
# classification
result.probs # cls prob, (num_class, )
# Each result is composed of torch.Tensor by default,
# in which you can easily use following functionality:
result = result.cuda()
result = result.cpu()
result = result.to("cpu")
result = result.numpy()
```
!!! note "Export and Deployment"
=== "Export, Fuse & info"
```python
from ultralytics import YOLO
model = YOLO("model.pt")
model.fuse()
model.info(verbose=True) # Print model information
model.export(format=) # TODO:
```
=== "Deployment"
More functionality coming soon
To know more about using YOLO
models, refer Model class Reference
Model reference{ .md-button .md-button--primary}
Using Trainers
YOLO
model class is a high-level wrapper on the Trainer classes. Each YOLO task has its own trainer that inherits
from BaseTrainer
.
!!! tip "Detection Trainer Example"
```python
from ultralytics.yolo import v8 import DetectionTrainer, DetectionValidator, DetectionPredictor
# trainer
trainer = DetectionTrainer(overrides={})
trainer.train()
trained_model = trainer.best
# Validator
val = DetectionValidator(args=...)
val(model=trained_model)
# predictor
pred = DetectionPredictor(overrides={})
pred(source=SOURCE, model=trained_model)
# resume from last weight
overrides["resume"] = trainer.last
trainer = detect.DetectionTrainer(overrides=overrides)
```
You can easily customize Trainers to support custom tasks or explore R&D ideas.
Learn more about Customizing Trainers
, Validators
and Predictors
to suit your project needs in the Customization
Section.
Customization tutorials{ .md-button .md-button--primary}