|
|
# Ultralytics YOLO 🚀, GPL-3.0 license |
|
|
""" |
|
|
Benchmark a YOLO model formats for speed and accuracy |
|
|
|
|
|
Usage: |
|
|
from ultralytics.yolo.utils.benchmarks import run_benchmarks |
|
|
run_benchmarks(model='yolov8n.pt', imgsz=160) |
|
|
|
|
|
Format | `format=argument` | Model |
|
|
--- | --- | --- |
|
|
PyTorch | - | yolov8n.pt |
|
|
TorchScript | `torchscript` | yolov8n.torchscript |
|
|
ONNX | `onnx` | yolov8n.onnx |
|
|
OpenVINO | `openvino` | yolov8n_openvino_model/ |
|
|
TensorRT | `engine` | yolov8n.engine |
|
|
CoreML | `coreml` | yolov8n.mlmodel |
|
|
TensorFlow SavedModel | `saved_model` | yolov8n_saved_model/ |
|
|
TensorFlow GraphDef | `pb` | yolov8n.pb |
|
|
TensorFlow Lite | `tflite` | yolov8n.tflite |
|
|
TensorFlow Edge TPU | `edgetpu` | yolov8n_edgetpu.tflite |
|
|
TensorFlow.js | `tfjs` | yolov8n_web_model/ |
|
|
PaddlePaddle | `paddle` | yolov8n_paddle_model/ |
|
|
""" |
|
|
|
|
|
import platform |
|
|
import time |
|
|
from pathlib import Path |
|
|
|
|
|
from ultralytics import YOLO |
|
|
from ultralytics.yolo.engine.exporter import export_formats |
|
|
from ultralytics.yolo.utils import LINUX, LOGGER, MACOS, ROOT, SETTINGS |
|
|
from ultralytics.yolo.utils.checks import check_yolo |
|
|
from ultralytics.yolo.utils.downloads import download |
|
|
from ultralytics.yolo.utils.files import file_size |
|
|
from ultralytics.yolo.utils.torch_utils import select_device |
|
|
|
|
|
|
|
|
def benchmark(model=Path(SETTINGS['weights_dir']) / 'yolov8n.pt', imgsz=160, half=False, device='cpu', hard_fail=False): |
|
|
import pandas as pd |
|
|
pd.options.display.max_columns = 10 |
|
|
pd.options.display.width = 120 |
|
|
device = select_device(device, verbose=False) |
|
|
if isinstance(model, (str, Path)): |
|
|
model = YOLO(model) |
|
|
|
|
|
y = [] |
|
|
t0 = time.time() |
|
|
for i, (name, format, suffix, cpu, gpu) in export_formats().iterrows(): # index, (name, format, suffix, CPU, GPU) |
|
|
emoji, filename = '❌', None # export defaults |
|
|
try: |
|
|
if model.task == 'classify': |
|
|
assert i != 11, 'paddle cls exports coming soon' |
|
|
assert i != 9 or LINUX, 'Edge TPU export only supported on Linux' |
|
|
if i == 10: |
|
|
assert MACOS or LINUX, 'TF.js export only supported on macOS and Linux' |
|
|
if 'cpu' in device.type: |
|
|
assert cpu, 'inference not supported on CPU' |
|
|
if 'cuda' in device.type: |
|
|
assert gpu, 'inference not supported on GPU' |
|
|
|
|
|
# Export |
|
|
if format == '-': |
|
|
filename = model.ckpt_path or model.cfg |
|
|
export = model # PyTorch format |
|
|
else: |
|
|
filename = model.export(imgsz=imgsz, format=format, half=half, device=device) # all others |
|
|
export = YOLO(filename, task=model.task) |
|
|
assert suffix in str(filename), 'export failed' |
|
|
emoji = '❎' # indicates export succeeded |
|
|
|
|
|
# Predict |
|
|
assert i not in (9, 10), 'inference not supported' # Edge TPU and TF.js are unsupported |
|
|
assert i != 5 or platform.system() == 'Darwin', 'inference only supported on macOS>=10.13' # CoreML |
|
|
if not (ROOT / 'assets/bus.jpg').exists(): |
|
|
download(url='https://ultralytics.com/images/bus.jpg', dir=ROOT / 'assets') |
|
|
export.predict(ROOT / 'assets/bus.jpg', imgsz=imgsz, device=device, half=half) |
|
|
|
|
|
# Validate |
|
|
if model.task == 'detect': |
|
|
data, key = 'coco128.yaml', 'metrics/mAP50-95(B)' |
|
|
elif model.task == 'segment': |
|
|
data, key = 'coco128-seg.yaml', 'metrics/mAP50-95(M)' |
|
|
elif model.task == 'classify': |
|
|
data, key = 'imagenet100', 'metrics/accuracy_top5' |
|
|
|
|
|
results = export.val(data=data, batch=1, imgsz=imgsz, plots=False, device=device, half=half, verbose=False) |
|
|
metric, speed = results.results_dict[key], results.speed['inference'] |
|
|
y.append([name, '✅', round(file_size(filename), 1), round(metric, 4), round(speed, 2)]) |
|
|
except Exception as e: |
|
|
if hard_fail: |
|
|
assert type(e) is AssertionError, f'Benchmark hard_fail for {name}: {e}' |
|
|
LOGGER.warning(f'ERROR ❌️ Benchmark failure for {name}: {e}') |
|
|
y.append([name, emoji, round(file_size(filename), 1), None, None]) # mAP, t_inference |
|
|
|
|
|
# Print results |
|
|
check_yolo(device=device) # print system info |
|
|
df = pd.DataFrame(y, columns=['Format', 'Status❔', 'Size (MB)', key, 'Inference time (ms/im)']) |
|
|
|
|
|
name = Path(model.ckpt_path).name |
|
|
s = f'\nBenchmarks complete for {name} on {data} at imgsz={imgsz} ({time.time() - t0:.2f}s)\n{df}\n' |
|
|
LOGGER.info(s) |
|
|
with open('benchmarks.log', 'a', errors='ignore', encoding='utf-8') as f: |
|
|
f.write(s) |
|
|
|
|
|
if hard_fail and isinstance(hard_fail, float): |
|
|
metrics = df[key].array # values to compare to floor |
|
|
floor = hard_fail # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n |
|
|
assert all(x > floor for x in metrics if pd.notna(x)), f'HARD FAIL: one or more metric(s) < floor {floor}' |
|
|
|
|
|
return df |
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
benchmark()
|
|
|
|