You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
777 lines
30 KiB
777 lines
30 KiB
# Ultralytics YOLO 🚀, GPL-3.0 license |
|
|
|
import math |
|
import random |
|
from copy import deepcopy |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
import torchvision.transforms as T |
|
|
|
from ..utils import LOGGER, colorstr |
|
from ..utils.checks import check_version |
|
from ..utils.instance import Instances |
|
from ..utils.metrics import bbox_ioa |
|
from ..utils.ops import segment2box |
|
from .utils import IMAGENET_MEAN, IMAGENET_STD, polygons2masks, polygons2masks_overlap |
|
|
|
|
|
# TODO: we might need a BaseTransform to make all these augments be compatible with both classification and semantic |
|
class BaseTransform: |
|
|
|
def __init__(self) -> None: |
|
pass |
|
|
|
def apply_image(self, labels): |
|
pass |
|
|
|
def apply_instances(self, labels): |
|
pass |
|
|
|
def apply_semantic(self, labels): |
|
pass |
|
|
|
def __call__(self, labels): |
|
self.apply_image(labels) |
|
self.apply_instances(labels) |
|
self.apply_semantic(labels) |
|
|
|
|
|
class Compose: |
|
|
|
def __init__(self, transforms): |
|
self.transforms = transforms |
|
|
|
def __call__(self, data): |
|
for t in self.transforms: |
|
data = t(data) |
|
return data |
|
|
|
def append(self, transform): |
|
self.transforms.append(transform) |
|
|
|
def tolist(self): |
|
return self.transforms |
|
|
|
def __repr__(self): |
|
format_string = f"{self.__class__.__name__}(" |
|
for t in self.transforms: |
|
format_string += "\n" |
|
format_string += f" {t}" |
|
format_string += "\n)" |
|
return format_string |
|
|
|
|
|
class BaseMixTransform: |
|
"""This implementation is from mmyolo""" |
|
|
|
def __init__(self, dataset, pre_transform=None, p=0.0) -> None: |
|
self.dataset = dataset |
|
self.pre_transform = pre_transform |
|
self.p = p |
|
|
|
def __call__(self, labels): |
|
if random.uniform(0, 1) > self.p: |
|
return labels |
|
|
|
# get index of one or three other images |
|
indexes = self.get_indexes() |
|
if isinstance(indexes, int): |
|
indexes = [indexes] |
|
|
|
# get images information will be used for Mosaic or MixUp |
|
mix_labels = [self.dataset.get_label_info(i) for i in indexes] |
|
|
|
if self.pre_transform is not None: |
|
for i, data in enumerate(mix_labels): |
|
mix_labels[i] = self.pre_transform(data) |
|
labels["mix_labels"] = mix_labels |
|
|
|
# Mosaic or MixUp |
|
labels = self._mix_transform(labels) |
|
labels.pop("mix_labels", None) |
|
return labels |
|
|
|
def _mix_transform(self, labels): |
|
raise NotImplementedError |
|
|
|
def get_indexes(self): |
|
raise NotImplementedError |
|
|
|
|
|
class Mosaic(BaseMixTransform): |
|
"""Mosaic augmentation. |
|
Args: |
|
imgsz (Sequence[int]): Image size after mosaic pipeline of single |
|
image. The shape order should be (height, width). |
|
Default to (640, 640). |
|
""" |
|
|
|
def __init__(self, dataset, imgsz=640, p=1.0, border=(0, 0)): |
|
assert 0 <= p <= 1.0, "The probability should be in range [0, 1]. " f"got {p}." |
|
super().__init__(dataset=dataset, p=p) |
|
self.dataset = dataset |
|
self.imgsz = imgsz |
|
self.border = border |
|
|
|
def get_indexes(self): |
|
return [random.randint(0, len(self.dataset) - 1) for _ in range(3)] |
|
|
|
def _mix_transform(self, labels): |
|
mosaic_labels = [] |
|
assert labels.get("rect_shape", None) is None, "rect and mosaic is exclusive." |
|
assert len(labels.get("mix_labels", [])) > 0, "There are no other images for mosaic augment." |
|
s = self.imgsz |
|
yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.border) # mosaic center x, y |
|
for i in range(4): |
|
labels_patch = (labels if i == 0 else labels["mix_labels"][i - 1]).copy() |
|
# Load image |
|
img = labels_patch["img"] |
|
h, w = labels_patch["resized_shape"] |
|
|
|
# place img in img4 |
|
if i == 0: # top left |
|
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles |
|
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image) |
|
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image) |
|
elif i == 1: # top right |
|
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc |
|
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h |
|
elif i == 2: # bottom left |
|
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h) |
|
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h) |
|
elif i == 3: # bottom right |
|
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h) |
|
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h) |
|
|
|
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax] |
|
padw = x1a - x1b |
|
padh = y1a - y1b |
|
|
|
labels_patch = self._update_labels(labels_patch, padw, padh) |
|
mosaic_labels.append(labels_patch) |
|
final_labels = self._cat_labels(mosaic_labels) |
|
final_labels["img"] = img4 |
|
return final_labels |
|
|
|
def _update_labels(self, labels, padw, padh): |
|
"""Update labels""" |
|
nh, nw = labels["img"].shape[:2] |
|
labels["instances"].convert_bbox(format="xyxy") |
|
labels["instances"].denormalize(nw, nh) |
|
labels["instances"].add_padding(padw, padh) |
|
return labels |
|
|
|
def _cat_labels(self, mosaic_labels): |
|
if len(mosaic_labels) == 0: |
|
return {} |
|
cls = [] |
|
instances = [] |
|
for labels in mosaic_labels: |
|
cls.append(labels["cls"]) |
|
instances.append(labels["instances"]) |
|
final_labels = { |
|
"ori_shape": mosaic_labels[0]["ori_shape"], |
|
"resized_shape": (self.imgsz * 2, self.imgsz * 2), |
|
"im_file": mosaic_labels[0]["im_file"], |
|
"cls": np.concatenate(cls, 0), |
|
"instances": Instances.concatenate(instances, axis=0)} |
|
final_labels["instances"].clip(self.imgsz * 2, self.imgsz * 2) |
|
return final_labels |
|
|
|
|
|
class MixUp(BaseMixTransform): |
|
|
|
def __init__(self, dataset, pre_transform=None, p=0.0) -> None: |
|
super().__init__(dataset=dataset, pre_transform=pre_transform, p=p) |
|
|
|
def get_indexes(self): |
|
return random.randint(0, len(self.dataset) - 1) |
|
|
|
def _mix_transform(self, labels): |
|
# Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf |
|
r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0 |
|
labels2 = labels["mix_labels"][0] |
|
labels["img"] = (labels["img"] * r + labels2["img"] * (1 - r)).astype(np.uint8) |
|
labels["instances"] = Instances.concatenate([labels["instances"], labels2["instances"]], axis=0) |
|
labels["cls"] = np.concatenate([labels["cls"], labels2["cls"]], 0) |
|
return labels |
|
|
|
|
|
class RandomPerspective: |
|
|
|
def __init__(self, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, border=(0, 0)): |
|
self.degrees = degrees |
|
self.translate = translate |
|
self.scale = scale |
|
self.shear = shear |
|
self.perspective = perspective |
|
# mosaic border |
|
self.border = border |
|
|
|
def affine_transform(self, img): |
|
# Center |
|
C = np.eye(3) |
|
|
|
C[0, 2] = -img.shape[1] / 2 # x translation (pixels) |
|
C[1, 2] = -img.shape[0] / 2 # y translation (pixels) |
|
|
|
# Perspective |
|
P = np.eye(3) |
|
P[2, 0] = random.uniform(-self.perspective, self.perspective) # x perspective (about y) |
|
P[2, 1] = random.uniform(-self.perspective, self.perspective) # y perspective (about x) |
|
|
|
# Rotation and Scale |
|
R = np.eye(3) |
|
a = random.uniform(-self.degrees, self.degrees) |
|
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations |
|
s = random.uniform(1 - self.scale, 1 + self.scale) |
|
# s = 2 ** random.uniform(-scale, scale) |
|
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s) |
|
|
|
# Shear |
|
S = np.eye(3) |
|
S[0, 1] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180) # x shear (deg) |
|
S[1, 0] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180) # y shear (deg) |
|
|
|
# Translation |
|
T = np.eye(3) |
|
T[0, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[0] # x translation (pixels) |
|
T[1, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[1] # y translation (pixels) |
|
|
|
# Combined rotation matrix |
|
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT |
|
# affine image |
|
if (self.border[0] != 0) or (self.border[1] != 0) or (M != np.eye(3)).any(): # image changed |
|
if self.perspective: |
|
img = cv2.warpPerspective(img, M, dsize=self.size, borderValue=(114, 114, 114)) |
|
else: # affine |
|
img = cv2.warpAffine(img, M[:2], dsize=self.size, borderValue=(114, 114, 114)) |
|
return img, M, s |
|
|
|
def apply_bboxes(self, bboxes, M): |
|
"""apply affine to bboxes only. |
|
|
|
Args: |
|
bboxes(ndarray): list of bboxes, xyxy format, with shape (num_bboxes, 4). |
|
M(ndarray): affine matrix. |
|
Returns: |
|
new_bboxes(ndarray): bboxes after affine, [num_bboxes, 4]. |
|
""" |
|
n = len(bboxes) |
|
if n == 0: |
|
return bboxes |
|
|
|
xy = np.ones((n * 4, 3)) |
|
xy[:, :2] = bboxes[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1 |
|
xy = xy @ M.T # transform |
|
xy = (xy[:, :2] / xy[:, 2:3] if self.perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine |
|
|
|
# create new boxes |
|
x = xy[:, [0, 2, 4, 6]] |
|
y = xy[:, [1, 3, 5, 7]] |
|
return np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T |
|
|
|
def apply_segments(self, segments, M): |
|
"""apply affine to segments and generate new bboxes from segments. |
|
|
|
Args: |
|
segments(ndarray): list of segments, [num_samples, 500, 2]. |
|
M(ndarray): affine matrix. |
|
Returns: |
|
new_segments(ndarray): list of segments after affine, [num_samples, 500, 2]. |
|
new_bboxes(ndarray): bboxes after affine, [N, 4]. |
|
""" |
|
n, num = segments.shape[:2] |
|
if n == 0: |
|
return [], segments |
|
|
|
xy = np.ones((n * num, 3)) |
|
segments = segments.reshape(-1, 2) |
|
xy[:, :2] = segments |
|
xy = xy @ M.T # transform |
|
xy = xy[:, :2] / xy[:, 2:3] |
|
segments = xy.reshape(n, -1, 2) |
|
bboxes = np.stack([segment2box(xy, self.size[0], self.size[1]) for xy in segments], 0) |
|
return bboxes, segments |
|
|
|
def apply_keypoints(self, keypoints, M): |
|
"""apply affine to keypoints. |
|
|
|
Args: |
|
keypoints(ndarray): keypoints, [N, 17, 2]. |
|
M(ndarray): affine matrix. |
|
Return: |
|
new_keypoints(ndarray): keypoints after affine, [N, 17, 2]. |
|
""" |
|
n = len(keypoints) |
|
if n == 0: |
|
return keypoints |
|
new_keypoints = np.ones((n * 17, 3)) |
|
new_keypoints[:, :2] = keypoints.reshape(n * 17, 2) # num_kpt is hardcoded to 17 |
|
new_keypoints = new_keypoints @ M.T # transform |
|
new_keypoints = (new_keypoints[:, :2] / new_keypoints[:, 2:3]).reshape(n, 34) # perspective rescale or affine |
|
new_keypoints[keypoints.reshape(-1, 34) == 0] = 0 |
|
x_kpts = new_keypoints[:, list(range(0, 34, 2))] |
|
y_kpts = new_keypoints[:, list(range(1, 34, 2))] |
|
|
|
x_kpts[np.logical_or.reduce((x_kpts < 0, x_kpts > self.size[0], y_kpts < 0, y_kpts > self.size[1]))] = 0 |
|
y_kpts[np.logical_or.reduce((x_kpts < 0, x_kpts > self.size[0], y_kpts < 0, y_kpts > self.size[1]))] = 0 |
|
new_keypoints[:, list(range(0, 34, 2))] = x_kpts |
|
new_keypoints[:, list(range(1, 34, 2))] = y_kpts |
|
return new_keypoints.reshape(n, 17, 2) |
|
|
|
def __call__(self, labels): |
|
""" |
|
Affine images and targets. |
|
|
|
Args: |
|
labels(Dict): a dict of `bboxes`, `segments`, `keypoints`. |
|
""" |
|
img = labels["img"] |
|
cls = labels["cls"] |
|
instances = labels.pop("instances") |
|
# make sure the coord formats are right |
|
instances.convert_bbox(format="xyxy") |
|
instances.denormalize(*img.shape[:2][::-1]) |
|
|
|
self.size = img.shape[1] + self.border[1] * 2, img.shape[0] + self.border[0] * 2 # w, h |
|
# M is affine matrix |
|
# scale for func:`box_candidates` |
|
img, M, scale = self.affine_transform(img) |
|
|
|
bboxes = self.apply_bboxes(instances.bboxes, M) |
|
|
|
segments = instances.segments |
|
keypoints = instances.keypoints |
|
# update bboxes if there are segments. |
|
if len(segments): |
|
bboxes, segments = self.apply_segments(segments, M) |
|
|
|
if keypoints is not None: |
|
keypoints = self.apply_keypoints(keypoints, M) |
|
new_instances = Instances(bboxes, segments, keypoints, bbox_format="xyxy", normalized=False) |
|
# clip |
|
new_instances.clip(*self.size) |
|
|
|
# filter instances |
|
instances.scale(scale_w=scale, scale_h=scale, bbox_only=True) |
|
# make the bboxes have the same scale with new_bboxes |
|
i = self.box_candidates(box1=instances.bboxes.T, |
|
box2=new_instances.bboxes.T, |
|
area_thr=0.01 if len(segments) else 0.10) |
|
labels["instances"] = new_instances[i] |
|
labels["cls"] = cls[i] |
|
labels["img"] = img |
|
labels["resized_shape"] = img.shape[:2] |
|
return labels |
|
|
|
def box_candidates(self, box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n) |
|
# Compute box candidates: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio |
|
w1, h1 = box1[2] - box1[0], box1[3] - box1[1] |
|
w2, h2 = box2[2] - box2[0], box2[3] - box2[1] |
|
ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio |
|
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates |
|
|
|
|
|
class RandomHSV: |
|
|
|
def __init__(self, hgain=0.5, sgain=0.5, vgain=0.5) -> None: |
|
self.hgain = hgain |
|
self.sgain = sgain |
|
self.vgain = vgain |
|
|
|
def __call__(self, labels): |
|
img = labels["img"] |
|
if self.hgain or self.sgain or self.vgain: |
|
r = np.random.uniform(-1, 1, 3) * [self.hgain, self.sgain, self.vgain] + 1 # random gains |
|
hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV)) |
|
dtype = img.dtype # uint8 |
|
|
|
x = np.arange(0, 256, dtype=r.dtype) |
|
lut_hue = ((x * r[0]) % 180).astype(dtype) |
|
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype) |
|
lut_val = np.clip(x * r[2], 0, 255).astype(dtype) |
|
|
|
im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))) |
|
cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed |
|
return labels |
|
|
|
|
|
class RandomFlip: |
|
|
|
def __init__(self, p=0.5, direction="horizontal") -> None: |
|
assert direction in ["horizontal", "vertical"], f"Support direction `horizontal` or `vertical`, got {direction}" |
|
assert 0 <= p <= 1.0 |
|
|
|
self.p = p |
|
self.direction = direction |
|
|
|
def __call__(self, labels): |
|
img = labels["img"] |
|
instances = labels.pop("instances") |
|
instances.convert_bbox(format="xywh") |
|
h, w = img.shape[:2] |
|
h = 1 if instances.normalized else h |
|
w = 1 if instances.normalized else w |
|
|
|
# Flip up-down |
|
if self.direction == "vertical" and random.random() < self.p: |
|
img = np.flipud(img) |
|
instances.flipud(h) |
|
if self.direction == "horizontal" and random.random() < self.p: |
|
img = np.fliplr(img) |
|
instances.fliplr(w) |
|
labels["img"] = np.ascontiguousarray(img) |
|
labels["instances"] = instances |
|
return labels |
|
|
|
|
|
class LetterBox: |
|
"""Resize image and padding for detection, instance segmentation, pose""" |
|
|
|
def __init__(self, new_shape=(640, 640), auto=False, scaleFill=False, scaleup=True, stride=32): |
|
self.new_shape = new_shape |
|
self.auto = auto |
|
self.scaleFill = scaleFill |
|
self.scaleup = scaleup |
|
self.stride = stride |
|
|
|
def __call__(self, labels=None, image=None): |
|
if labels is None: |
|
labels = {} |
|
img = labels.get("img") if image is None else image |
|
shape = img.shape[:2] # current shape [height, width] |
|
new_shape = labels.pop("rect_shape", self.new_shape) |
|
if isinstance(new_shape, int): |
|
new_shape = (new_shape, new_shape) |
|
|
|
# Scale ratio (new / old) |
|
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) |
|
if not self.scaleup: # only scale down, do not scale up (for better val mAP) |
|
r = min(r, 1.0) |
|
|
|
# Compute padding |
|
ratio = r, r # width, height ratios |
|
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) |
|
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding |
|
if self.auto: # minimum rectangle |
|
dw, dh = np.mod(dw, self.stride), np.mod(dh, self.stride) # wh padding |
|
elif self.scaleFill: # stretch |
|
dw, dh = 0.0, 0.0 |
|
new_unpad = (new_shape[1], new_shape[0]) |
|
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios |
|
|
|
dw /= 2 # divide padding into 2 sides |
|
dh /= 2 |
|
if labels.get("ratio_pad"): |
|
labels["ratio_pad"] = (labels["ratio_pad"], (dw, dh)) # for evaluation |
|
|
|
if shape[::-1] != new_unpad: # resize |
|
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) |
|
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) |
|
left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) |
|
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, |
|
value=(114, 114, 114)) # add border |
|
|
|
if len(labels): |
|
labels = self._update_labels(labels, ratio, dw, dh) |
|
labels["img"] = img |
|
labels["resized_shape"] = new_shape |
|
return labels |
|
else: |
|
return img |
|
|
|
def _update_labels(self, labels, ratio, padw, padh): |
|
"""Update labels""" |
|
labels["instances"].convert_bbox(format="xyxy") |
|
labels["instances"].denormalize(*labels["img"].shape[:2][::-1]) |
|
labels["instances"].scale(*ratio) |
|
labels["instances"].add_padding(padw, padh) |
|
return labels |
|
|
|
|
|
class CopyPaste: |
|
|
|
def __init__(self, p=0.5) -> None: |
|
self.p = p |
|
|
|
def __call__(self, labels): |
|
# Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy) |
|
im = labels["img"] |
|
cls = labels["cls"] |
|
instances = labels.pop("instances") |
|
instances.convert_bbox(format="xyxy") |
|
if self.p and len(instances.segments): |
|
n = len(instances) |
|
_, w, _ = im.shape # height, width, channels |
|
im_new = np.zeros(im.shape, np.uint8) |
|
|
|
# calculate ioa first then select indexes randomly |
|
ins_flip = deepcopy(instances) |
|
ins_flip.fliplr(w) |
|
|
|
ioa = bbox_ioa(ins_flip.bboxes, instances.bboxes) # intersection over area, (N, M) |
|
indexes = np.nonzero((ioa < 0.30).all(1))[0] # (N, ) |
|
n = len(indexes) |
|
for j in random.sample(list(indexes), k=round(self.p * n)): |
|
cls = np.concatenate((cls, cls[[j]]), axis=0) |
|
instances = Instances.concatenate((instances, ins_flip[[j]]), axis=0) |
|
cv2.drawContours(im_new, instances.segments[[j]].astype(np.int32), -1, (1, 1, 1), cv2.FILLED) |
|
|
|
result = cv2.flip(im, 1) # augment segments (flip left-right) |
|
i = cv2.flip(im_new, 1).astype(bool) |
|
im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug |
|
|
|
labels["img"] = im |
|
labels["cls"] = cls |
|
labels["instances"] = instances |
|
return labels |
|
|
|
|
|
class Albumentations: |
|
# YOLOv8 Albumentations class (optional, only used if package is installed) |
|
def __init__(self, p=1.0): |
|
self.p = p |
|
self.transform = None |
|
prefix = colorstr("albumentations: ") |
|
try: |
|
import albumentations as A |
|
|
|
check_version(A.__version__, "1.0.3", hard=True) # version requirement |
|
|
|
T = [ |
|
A.Blur(p=0.01), |
|
A.MedianBlur(p=0.01), |
|
A.ToGray(p=0.01), |
|
A.CLAHE(p=0.01), |
|
A.RandomBrightnessContrast(p=0.0), |
|
A.RandomGamma(p=0.0), |
|
A.ImageCompression(quality_lower=75, p=0.0),] # transforms |
|
self.transform = A.Compose(T, bbox_params=A.BboxParams(format="yolo", label_fields=["class_labels"])) |
|
|
|
LOGGER.info(prefix + ", ".join(f"{x}".replace("always_apply=False, ", "") for x in T if x.p)) |
|
except ImportError: # package not installed, skip |
|
pass |
|
except Exception as e: |
|
LOGGER.info(f"{prefix}{e}") |
|
|
|
def __call__(self, labels): |
|
im = labels["img"] |
|
cls = labels["cls"] |
|
if len(cls): |
|
labels["instances"].convert_bbox("xywh") |
|
labels["instances"].normalize(*im.shape[:2][::-1]) |
|
bboxes = labels["instances"].bboxes |
|
# TODO: add supports of segments and keypoints |
|
if self.transform and random.random() < self.p: |
|
new = self.transform(image=im, bboxes=bboxes, class_labels=cls) # transformed |
|
labels["img"] = new["image"] |
|
labels["cls"] = np.array(new["class_labels"]) |
|
labels["instances"].update(bboxes=bboxes) |
|
return labels |
|
|
|
|
|
# TODO: technically this is not an augmentation, maybe we should put this to another files |
|
class Format: |
|
|
|
def __init__(self, |
|
bbox_format="xywh", |
|
normalize=True, |
|
return_mask=False, |
|
return_keypoint=False, |
|
mask_ratio=4, |
|
mask_overlap=True, |
|
batch_idx=True): |
|
self.bbox_format = bbox_format |
|
self.normalize = normalize |
|
self.return_mask = return_mask # set False when training detection only |
|
self.return_keypoint = return_keypoint |
|
self.mask_ratio = mask_ratio |
|
self.mask_overlap = mask_overlap |
|
self.batch_idx = batch_idx # keep the batch indexes |
|
|
|
def __call__(self, labels): |
|
img = labels["img"] |
|
h, w = img.shape[:2] |
|
cls = labels.pop("cls") |
|
instances = labels.pop("instances") |
|
instances.convert_bbox(format=self.bbox_format) |
|
instances.denormalize(w, h) |
|
nl = len(instances) |
|
|
|
if self.return_mask: |
|
if nl: |
|
masks, instances, cls = self._format_segments(instances, cls, w, h) |
|
masks = torch.from_numpy(masks) |
|
else: |
|
masks = torch.zeros(1 if self.mask_overlap else nl, img.shape[0] // self.mask_ratio, |
|
img.shape[1] // self.mask_ratio) |
|
labels["masks"] = masks |
|
if self.normalize: |
|
instances.normalize(w, h) |
|
labels["img"] = self._format_img(img) |
|
labels["cls"] = torch.from_numpy(cls) if nl else torch.zeros(nl) |
|
labels["bboxes"] = torch.from_numpy(instances.bboxes) if nl else torch.zeros((nl, 4)) |
|
if self.return_keypoint: |
|
labels["keypoints"] = torch.from_numpy(instances.keypoints) if nl else torch.zeros((nl, 17, 2)) |
|
# then we can use collate_fn |
|
if self.batch_idx: |
|
labels["batch_idx"] = torch.zeros(nl) |
|
return labels |
|
|
|
def _format_img(self, img): |
|
if len(img.shape) < 3: |
|
img = np.expand_dims(img, -1) |
|
img = np.ascontiguousarray(img.transpose(2, 0, 1)[::-1]) |
|
img = torch.from_numpy(img) |
|
return img |
|
|
|
def _format_segments(self, instances, cls, w, h): |
|
"""convert polygon points to bitmap""" |
|
segments = instances.segments |
|
if self.mask_overlap: |
|
masks, sorted_idx = polygons2masks_overlap((h, w), segments, downsample_ratio=self.mask_ratio) |
|
masks = masks[None] # (640, 640) -> (1, 640, 640) |
|
instances = instances[sorted_idx] |
|
cls = cls[sorted_idx] |
|
else: |
|
masks = polygons2masks((h, w), segments, color=1, downsample_ratio=self.mask_ratio) |
|
|
|
return masks, instances, cls |
|
|
|
|
|
def mosaic_transforms(dataset, imgsz, hyp): |
|
pre_transform = Compose([ |
|
Mosaic(dataset, imgsz=imgsz, p=hyp.mosaic, border=[-imgsz // 2, -imgsz // 2]), |
|
CopyPaste(p=hyp.copy_paste), |
|
RandomPerspective( |
|
degrees=hyp.degrees, |
|
translate=hyp.translate, |
|
scale=hyp.scale, |
|
shear=hyp.shear, |
|
perspective=hyp.perspective, |
|
border=[-imgsz // 2, -imgsz // 2], |
|
),]) |
|
return Compose([ |
|
pre_transform, |
|
MixUp(dataset, pre_transform=pre_transform, p=hyp.mixup), |
|
Albumentations(p=1.0), |
|
RandomHSV(hgain=hyp.hsv_h, sgain=hyp.hsv_s, vgain=hyp.hsv_v), |
|
RandomFlip(direction="vertical", p=hyp.flipud), |
|
RandomFlip(direction="horizontal", p=hyp.fliplr),]) # transforms |
|
|
|
|
|
def affine_transforms(imgsz, hyp): |
|
return Compose([ |
|
LetterBox(new_shape=(imgsz, imgsz)), |
|
RandomPerspective( |
|
degrees=hyp.degrees, |
|
translate=hyp.translate, |
|
scale=hyp.scale, |
|
shear=hyp.shear, |
|
perspective=hyp.perspective, |
|
border=[0, 0], |
|
), |
|
Albumentations(p=1.0), |
|
RandomHSV(hgain=hyp.hsv_h, sgain=hyp.hsv_s, vgain=hyp.hsv_v), |
|
RandomFlip(direction="vertical", p=hyp.flipud), |
|
RandomFlip(direction="horizontal", p=hyp.fliplr),]) # transforms |
|
|
|
|
|
# Classification augmentations ----------------------------------------------------------------------------------------- |
|
def classify_transforms(size=224): |
|
# Transforms to apply if albumentations not installed |
|
assert isinstance(size, int), f"ERROR: classify_transforms size {size} must be integer, not (list, tuple)" |
|
# T.Compose([T.ToTensor(), T.Resize(size), T.CenterCrop(size), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)]) |
|
return T.Compose([CenterCrop(size), ToTensor(), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)]) |
|
|
|
|
|
def classify_albumentations( |
|
augment=True, |
|
size=224, |
|
scale=(0.08, 1.0), |
|
hflip=0.5, |
|
vflip=0.0, |
|
jitter=0.4, |
|
mean=IMAGENET_MEAN, |
|
std=IMAGENET_STD, |
|
auto_aug=False, |
|
): |
|
# YOLOv8 classification Albumentations (optional, only used if package is installed) |
|
prefix = colorstr("albumentations: ") |
|
try: |
|
import albumentations as A |
|
from albumentations.pytorch import ToTensorV2 |
|
|
|
check_version(A.__version__, "1.0.3", hard=True) # version requirement |
|
if augment: # Resize and crop |
|
T = [A.RandomResizedCrop(height=size, width=size, scale=scale)] |
|
if auto_aug: |
|
# TODO: implement AugMix, AutoAug & RandAug in albumentation |
|
LOGGER.info(f"{prefix}auto augmentations are currently not supported") |
|
else: |
|
if hflip > 0: |
|
T += [A.HorizontalFlip(p=hflip)] |
|
if vflip > 0: |
|
T += [A.VerticalFlip(p=vflip)] |
|
if jitter > 0: |
|
color_jitter = (float(jitter),) * 3 # repeat value for brightness, contrast, saturation, 0 hue |
|
T += [A.ColorJitter(*color_jitter, 0)] |
|
else: # Use fixed crop for eval set (reproducibility) |
|
T = [A.SmallestMaxSize(max_size=size), A.CenterCrop(height=size, width=size)] |
|
T += [A.Normalize(mean=mean, std=std), ToTensorV2()] # Normalize and convert to Tensor |
|
LOGGER.info(prefix + ", ".join(f"{x}".replace("always_apply=False, ", "") for x in T if x.p)) |
|
return A.Compose(T) |
|
|
|
except ImportError: # package not installed, skip |
|
pass |
|
except Exception as e: |
|
LOGGER.info(f"{prefix}{e}") |
|
|
|
|
|
class ClassifyLetterBox: |
|
# YOLOv8 LetterBox class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()]) |
|
def __init__(self, size=(640, 640), auto=False, stride=32): |
|
super().__init__() |
|
self.h, self.w = (size, size) if isinstance(size, int) else size |
|
self.auto = auto # pass max size integer, automatically solve for short side using stride |
|
self.stride = stride # used with auto |
|
|
|
def __call__(self, im): # im = np.array HWC |
|
imh, imw = im.shape[:2] |
|
r = min(self.h / imh, self.w / imw) # ratio of new/old |
|
h, w = round(imh * r), round(imw * r) # resized image |
|
hs, ws = (math.ceil(x / self.stride) * self.stride for x in (h, w)) if self.auto else self.h, self.w |
|
top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1) |
|
im_out = np.full((self.h, self.w, 3), 114, dtype=im.dtype) |
|
im_out[top:top + h, left:left + w] = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR) |
|
return im_out |
|
|
|
|
|
class CenterCrop: |
|
# YOLOv8 CenterCrop class for image preprocessing, i.e. T.Compose([CenterCrop(size), ToTensor()]) |
|
def __init__(self, size=640): |
|
super().__init__() |
|
self.h, self.w = (size, size) if isinstance(size, int) else size |
|
|
|
def __call__(self, im): # im = np.array HWC |
|
imh, imw = im.shape[:2] |
|
m = min(imh, imw) # min dimension |
|
top, left = (imh - m) // 2, (imw - m) // 2 |
|
return cv2.resize(im[top:top + m, left:left + m], (self.w, self.h), interpolation=cv2.INTER_LINEAR) |
|
|
|
|
|
class ToTensor: |
|
# YOLOv8 ToTensor class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()]) |
|
def __init__(self, half=False): |
|
super().__init__() |
|
self.half = half |
|
|
|
def __call__(self, im): # im = np.array HWC in BGR order |
|
im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1]) # HWC to CHW -> BGR to RGB -> contiguous |
|
im = torch.from_numpy(im) # to torch |
|
im = im.half() if self.half else im.float() # uint8 to fp16/32 |
|
im /= 255.0 # 0-255 to 0.0-1.0 |
|
return im
|
|
|