You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
156 lines
6.6 KiB
156 lines
6.6 KiB
# Ultralytics YOLO 🚀, AGPL-3.0 license |
|
|
|
from ultralytics.utils import SETTINGS, TESTS_RUNNING |
|
from ultralytics.utils.torch_utils import model_info_for_loggers |
|
|
|
try: |
|
assert not TESTS_RUNNING # do not log pytest |
|
assert SETTINGS['wandb'] is True # verify integration is enabled |
|
import wandb as wb |
|
|
|
assert hasattr(wb, '__version__') # verify package is not directory |
|
|
|
import numpy as np |
|
import pandas as pd |
|
|
|
_processed_plots = {} |
|
|
|
except (ImportError, AssertionError): |
|
wb = None |
|
|
|
|
|
def _custom_table(x, y, classes, title='Precision Recall Curve', x_title='Recall', y_title='Precision'): |
|
""" |
|
Create and log a custom metric visualization to wandb.plot.pr_curve. |
|
|
|
This function crafts a custom metric visualization that mimics the behavior of wandb's default precision-recall curve |
|
while allowing for enhanced customization. The visual metric is useful for monitoring model performance across different classes. |
|
|
|
Args: |
|
x (List): Values for the x-axis; expected to have length N. |
|
y (List): Corresponding values for the y-axis; also expected to have length N. |
|
classes (List): Labels identifying the class of each point; length N. |
|
title (str, optional): Title for the plot; defaults to 'Precision Recall Curve'. |
|
x_title (str, optional): Label for the x-axis; defaults to 'Recall'. |
|
y_title (str, optional): Label for the y-axis; defaults to 'Precision'. |
|
|
|
Returns: |
|
(wandb.Object): A wandb object suitable for logging, showcasing the crafted metric visualization. |
|
""" |
|
df = pd.DataFrame({'class': classes, 'y': y, 'x': x}).round(3) |
|
fields = {'x': 'x', 'y': 'y', 'class': 'class'} |
|
string_fields = {'title': title, 'x-axis-title': x_title, 'y-axis-title': y_title} |
|
return wb.plot_table('wandb/area-under-curve/v0', |
|
wb.Table(dataframe=df), |
|
fields=fields, |
|
string_fields=string_fields) |
|
|
|
|
|
def _plot_curve(x, |
|
y, |
|
names=None, |
|
id='precision-recall', |
|
title='Precision Recall Curve', |
|
x_title='Recall', |
|
y_title='Precision', |
|
num_x=100, |
|
only_mean=False): |
|
""" |
|
Log a metric curve visualization. |
|
|
|
This function generates a metric curve based on input data and logs the visualization to wandb. |
|
The curve can represent aggregated data (mean) or individual class data, depending on the 'only_mean' flag. |
|
|
|
Args: |
|
x (np.ndarray): Data points for the x-axis with length N. |
|
y (np.ndarray): Corresponding data points for the y-axis with shape CxN, where C represents the number of classes. |
|
names (list, optional): Names of the classes corresponding to the y-axis data; length C. Defaults to an empty list. |
|
id (str, optional): Unique identifier for the logged data in wandb. Defaults to 'precision-recall'. |
|
title (str, optional): Title for the visualization plot. Defaults to 'Precision Recall Curve'. |
|
x_title (str, optional): Label for the x-axis. Defaults to 'Recall'. |
|
y_title (str, optional): Label for the y-axis. Defaults to 'Precision'. |
|
num_x (int, optional): Number of interpolated data points for visualization. Defaults to 100. |
|
only_mean (bool, optional): Flag to indicate if only the mean curve should be plotted. Defaults to True. |
|
|
|
Note: |
|
The function leverages the '_custom_table' function to generate the actual visualization. |
|
""" |
|
# Create new x |
|
if names is None: |
|
names = [] |
|
x_new = np.linspace(x[0], x[-1], num_x).round(5) |
|
|
|
# Create arrays for logging |
|
x_log = x_new.tolist() |
|
y_log = np.interp(x_new, x, np.mean(y, axis=0)).round(3).tolist() |
|
|
|
if only_mean: |
|
table = wb.Table(data=list(zip(x_log, y_log)), columns=[x_title, y_title]) |
|
wb.run.log({title: wb.plot.line(table, x_title, y_title, title=title)}) |
|
else: |
|
classes = ['mean'] * len(x_log) |
|
for i, yi in enumerate(y): |
|
x_log.extend(x_new) # add new x |
|
y_log.extend(np.interp(x_new, x, yi)) # interpolate y to new x |
|
classes.extend([names[i]] * len(x_new)) # add class names |
|
wb.log({id: _custom_table(x_log, y_log, classes, title, x_title, y_title)}, commit=False) |
|
|
|
|
|
def _log_plots(plots, step): |
|
"""Logs plots from the input dictionary if they haven't been logged already at the specified step.""" |
|
for name, params in plots.items(): |
|
timestamp = params['timestamp'] |
|
if _processed_plots.get(name) != timestamp: |
|
wb.run.log({name.stem: wb.Image(str(name))}, step=step) |
|
_processed_plots[name] = timestamp |
|
|
|
|
|
def on_pretrain_routine_start(trainer): |
|
"""Initiate and start project if module is present.""" |
|
wb.run or wb.init(project=trainer.args.project or 'YOLOv8', name=trainer.args.name, config=vars(trainer.args)) |
|
|
|
|
|
def on_fit_epoch_end(trainer): |
|
"""Logs training metrics and model information at the end of an epoch.""" |
|
wb.run.log(trainer.metrics, step=trainer.epoch + 1) |
|
_log_plots(trainer.plots, step=trainer.epoch + 1) |
|
_log_plots(trainer.validator.plots, step=trainer.epoch + 1) |
|
if trainer.epoch == 0: |
|
wb.run.log(model_info_for_loggers(trainer), step=trainer.epoch + 1) |
|
|
|
|
|
def on_train_epoch_end(trainer): |
|
"""Log metrics and save images at the end of each training epoch.""" |
|
wb.run.log(trainer.label_loss_items(trainer.tloss, prefix='train'), step=trainer.epoch + 1) |
|
wb.run.log(trainer.lr, step=trainer.epoch + 1) |
|
if trainer.epoch == 1: |
|
_log_plots(trainer.plots, step=trainer.epoch + 1) |
|
|
|
|
|
def on_train_end(trainer): |
|
"""Save the best model as an artifact at end of training.""" |
|
_log_plots(trainer.validator.plots, step=trainer.epoch + 1) |
|
_log_plots(trainer.plots, step=trainer.epoch + 1) |
|
art = wb.Artifact(type='model', name=f'run_{wb.run.id}_model') |
|
if trainer.best.exists(): |
|
art.add_file(trainer.best) |
|
wb.run.log_artifact(art, aliases=['best']) |
|
for curve_name, curve_values in zip(trainer.validator.metrics.curves, trainer.validator.metrics.curves_results): |
|
x, y, x_title, y_title = curve_values |
|
_plot_curve( |
|
x, |
|
y, |
|
names=list(trainer.validator.metrics.names.values()), |
|
id=f'curves/{curve_name}', |
|
title=curve_name, |
|
x_title=x_title, |
|
y_title=y_title, |
|
) |
|
wb.run.finish() # required or run continues on dashboard |
|
|
|
|
|
callbacks = { |
|
'on_pretrain_routine_start': on_pretrain_routine_start, |
|
'on_train_epoch_end': on_train_epoch_end, |
|
'on_fit_epoch_end': on_fit_epoch_end, |
|
'on_train_end': on_train_end} if wb else {}
|
|
|