You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

98 lines
3.3 KiB

# Ultralytics YOLO 🚀, AGPL-3.0 license
import json
from time import time
from hub_sdk.config import HUB_WEB_ROOT
from ultralytics.hub.utils import PREFIX, events
from ultralytics.utils import LOGGER, SETTINGS
def on_pretrain_routine_end(trainer):
"""Logs info before starting timer for upload rate limit."""
session = getattr(trainer, 'hub_session', None)
if session:
# Start timer for upload rate limit
session.timers = {
'metrics': time(),
'ckpt': time(), } # start timer on session.rate_limit
def on_fit_epoch_end(trainer):
"""Uploads training progress metrics at the end of each epoch."""
session = getattr(trainer, 'hub_session', None)
if session:
# Upload metrics after val end
all_plots = {
**trainer.label_loss_items(trainer.tloss, prefix='train'),
**trainer.metrics, }
if trainer.epoch == 0:
from ultralytics.utils.torch_utils import model_info_for_loggers
all_plots = {**all_plots, **model_info_for_loggers(trainer)}
session.metrics_queue[trainer.epoch] = json.dumps(all_plots)
if time() - session.timers['metrics'] > session.rate_limits['metrics']:
session.upload_metrics()
session.timers['metrics'] = time() # reset timer
session.metrics_queue = {} # reset queue
def on_model_save(trainer):
"""Saves checkpoints to Ultralytics HUB with rate limiting."""
session = getattr(trainer, 'hub_session', None)
if session:
# Upload checkpoints with rate limiting
is_best = trainer.best_fitness == trainer.fitness
if time() - session.timers['ckpt'] > session.rate_limits['ckpt']:
LOGGER.info(f'{PREFIX}Uploading checkpoint {HUB_WEB_ROOT}/models/{session.model_file}')
session.upload_model(trainer.epoch, trainer.last, is_best)
session.timers['ckpt'] = time() # reset timer
def on_train_end(trainer):
"""Upload final model and metrics to Ultralytics HUB at the end of training."""
session = getattr(trainer, 'hub_session', None)
if session:
# Upload final model and metrics with exponential standoff
LOGGER.info(f'{PREFIX}Syncing final model...')
session.upload_model(
trainer.epoch,
trainer.best,
map=trainer.metrics.get('metrics/mAP50-95(B)', 0),
final=True,
)
session.alive = False # stop heartbeats
LOGGER.info(f'{PREFIX}Done ✅\n'
f'{PREFIX}View model at {session.model_url} 🚀')
def on_train_start(trainer):
"""Run events on train start."""
events(trainer.args)
def on_val_start(validator):
"""Runs events on validation start."""
events(validator.args)
def on_predict_start(predictor):
"""Run events on predict start."""
events(predictor.args)
def on_export_start(exporter):
"""Run events on export start."""
events(exporter.args)
callbacks = ({
'on_pretrain_routine_end': on_pretrain_routine_end,
'on_fit_epoch_end': on_fit_epoch_end,
'on_model_save': on_model_save,
'on_train_end': on_train_end,
'on_train_start': on_train_start,
'on_val_start': on_val_start,
'on_predict_start': on_predict_start,
'on_export_start': on_export_start, } if SETTINGS['hub'] is True else {}) # verify enabled