|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license |
|
|
|
|
|
from ultralytics.utils import LOGGER, SETTINGS, TESTS_RUNNING, checks |
|
|
|
|
|
try: |
|
|
assert not TESTS_RUNNING # do not log pytest |
|
|
assert SETTINGS['dvc'] is True # verify integration is enabled |
|
|
import dvclive |
|
|
assert checks.check_version('dvclive', '2.11.0', verbose=True) |
|
|
|
|
|
import os |
|
|
import re |
|
|
from pathlib import Path |
|
|
|
|
|
# DVCLive logger instance |
|
|
live = None |
|
|
_processed_plots = {} |
|
|
|
|
|
# `on_fit_epoch_end` is called on final validation (probably need to be fixed) for now this is the way we |
|
|
# distinguish final evaluation of the best model vs last epoch validation |
|
|
_training_epoch = False |
|
|
|
|
|
except (ImportError, AssertionError, TypeError): |
|
|
dvclive = None |
|
|
|
|
|
|
|
|
def _log_images(path, prefix=''): |
|
|
"""Logs images at specified path with an optional prefix using DVCLive.""" |
|
|
if live: |
|
|
name = path.name |
|
|
|
|
|
# Group images by batch to enable sliders in UI |
|
|
if m := re.search(r'_batch(\d+)', name): |
|
|
ni = m[1] |
|
|
new_stem = re.sub(r'_batch(\d+)', '_batch', path.stem) |
|
|
name = (Path(new_stem) / ni).with_suffix(path.suffix) |
|
|
|
|
|
live.log_image(os.path.join(prefix, name), path) |
|
|
|
|
|
|
|
|
def _log_plots(plots, prefix=''): |
|
|
"""Logs plot images for training progress if they have not been previously processed.""" |
|
|
for name, params in plots.items(): |
|
|
timestamp = params['timestamp'] |
|
|
if _processed_plots.get(name) != timestamp: |
|
|
_log_images(name, prefix) |
|
|
_processed_plots[name] = timestamp |
|
|
|
|
|
|
|
|
def _log_confusion_matrix(validator): |
|
|
"""Logs the confusion matrix for the given validator using DVCLive.""" |
|
|
targets = [] |
|
|
preds = [] |
|
|
matrix = validator.confusion_matrix.matrix |
|
|
names = list(validator.names.values()) |
|
|
if validator.confusion_matrix.task == 'detect': |
|
|
names += ['background'] |
|
|
|
|
|
for ti, pred in enumerate(matrix.T.astype(int)): |
|
|
for pi, num in enumerate(pred): |
|
|
targets.extend([names[ti]] * num) |
|
|
preds.extend([names[pi]] * num) |
|
|
|
|
|
live.log_sklearn_plot('confusion_matrix', targets, preds, name='cf.json', normalized=True) |
|
|
|
|
|
|
|
|
def on_pretrain_routine_start(trainer): |
|
|
"""Initializes DVCLive logger for training metadata during pre-training routine.""" |
|
|
try: |
|
|
global live |
|
|
live = dvclive.Live(save_dvc_exp=True, cache_images=True) |
|
|
LOGGER.info("DVCLive is detected and auto logging is enabled (run 'yolo settings dvc=False' to disable).") |
|
|
except Exception as e: |
|
|
LOGGER.warning(f'WARNING ⚠️ DVCLive installed but not initialized correctly, not logging this run. {e}') |
|
|
|
|
|
|
|
|
def on_pretrain_routine_end(trainer): |
|
|
"""Logs plots related to the training process at the end of the pretraining routine.""" |
|
|
_log_plots(trainer.plots, 'train') |
|
|
|
|
|
|
|
|
def on_train_start(trainer): |
|
|
"""Logs the training parameters if DVCLive logging is active.""" |
|
|
if live: |
|
|
live.log_params(trainer.args) |
|
|
|
|
|
|
|
|
def on_train_epoch_start(trainer): |
|
|
"""Sets the global variable _training_epoch value to True at the start of training each epoch.""" |
|
|
global _training_epoch |
|
|
_training_epoch = True |
|
|
|
|
|
|
|
|
def on_fit_epoch_end(trainer): |
|
|
"""Logs training metrics and model info, and advances to next step on the end of each fit epoch.""" |
|
|
global _training_epoch |
|
|
if live and _training_epoch: |
|
|
all_metrics = {**trainer.label_loss_items(trainer.tloss, prefix='train'), **trainer.metrics, **trainer.lr} |
|
|
for metric, value in all_metrics.items(): |
|
|
live.log_metric(metric, value) |
|
|
|
|
|
if trainer.epoch == 0: |
|
|
from ultralytics.utils.torch_utils import model_info_for_loggers |
|
|
for metric, value in model_info_for_loggers(trainer).items(): |
|
|
live.log_metric(metric, value, plot=False) |
|
|
|
|
|
_log_plots(trainer.plots, 'train') |
|
|
_log_plots(trainer.validator.plots, 'val') |
|
|
|
|
|
live.next_step() |
|
|
_training_epoch = False |
|
|
|
|
|
|
|
|
def on_train_end(trainer): |
|
|
"""Logs the best metrics, plots, and confusion matrix at the end of training if DVCLive is active.""" |
|
|
if live: |
|
|
# At the end log the best metrics. It runs validator on the best model internally. |
|
|
all_metrics = {**trainer.label_loss_items(trainer.tloss, prefix='train'), **trainer.metrics, **trainer.lr} |
|
|
for metric, value in all_metrics.items(): |
|
|
live.log_metric(metric, value, plot=False) |
|
|
|
|
|
_log_plots(trainer.plots, 'val') |
|
|
_log_plots(trainer.validator.plots, 'val') |
|
|
_log_confusion_matrix(trainer.validator) |
|
|
|
|
|
if trainer.best.exists(): |
|
|
live.log_artifact(trainer.best, copy=True, type='model') |
|
|
|
|
|
live.end() |
|
|
|
|
|
|
|
|
callbacks = { |
|
|
'on_pretrain_routine_start': on_pretrain_routine_start, |
|
|
'on_pretrain_routine_end': on_pretrain_routine_end, |
|
|
'on_train_start': on_train_start, |
|
|
'on_train_epoch_start': on_train_epoch_start, |
|
|
'on_fit_epoch_end': on_fit_epoch_end, |
|
|
'on_train_end': on_train_end} if dvclive else {}
|
|
|
|