|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license |
|
|
|
|
|
import contextlib |
|
|
from copy import deepcopy |
|
|
from pathlib import Path |
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
|
|
|
from ultralytics.nn.modules import (AIFI, C1, C2, C3, C3TR, OBB, SPP, SPPF, Bottleneck, BottleneckCSP, C2f, C3Ghost, |
|
|
C3x, Classify, Concat, Conv, Conv2, ConvTranspose, Detect, DWConv, |
|
|
DWConvTranspose2d, Focus, GhostBottleneck, GhostConv, HGBlock, HGStem, Pose, RepC3, |
|
|
RepConv, ResNetLayer, RTDETRDecoder, Segment) |
|
|
from ultralytics.utils import DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, colorstr, emojis, yaml_load |
|
|
from ultralytics.utils.checks import check_requirements, check_suffix, check_yaml |
|
|
from ultralytics.utils.loss import v8ClassificationLoss, v8DetectionLoss, v8OBBLoss, v8PoseLoss, v8SegmentationLoss |
|
|
from ultralytics.utils.plotting import feature_visualization |
|
|
from ultralytics.utils.torch_utils import (fuse_conv_and_bn, fuse_deconv_and_bn, initialize_weights, intersect_dicts, |
|
|
make_divisible, model_info, scale_img, time_sync) |
|
|
|
|
|
try: |
|
|
import thop |
|
|
except ImportError: |
|
|
thop = None |
|
|
|
|
|
|
|
|
class BaseModel(nn.Module): |
|
|
"""The BaseModel class serves as a base class for all the models in the Ultralytics YOLO family.""" |
|
|
|
|
|
def forward(self, x, *args, **kwargs): |
|
|
""" |
|
|
Forward pass of the model on a single scale. Wrapper for `_forward_once` method. |
|
|
|
|
|
Args: |
|
|
x (torch.Tensor | dict): The input image tensor or a dict including image tensor and gt labels. |
|
|
|
|
|
Returns: |
|
|
(torch.Tensor): The output of the network. |
|
|
""" |
|
|
if isinstance(x, dict): # for cases of training and validating while training. |
|
|
return self.loss(x, *args, **kwargs) |
|
|
return self.predict(x, *args, **kwargs) |
|
|
|
|
|
def predict(self, x, profile=False, visualize=False, augment=False, embed=None): |
|
|
""" |
|
|
Perform a forward pass through the network. |
|
|
|
|
|
Args: |
|
|
x (torch.Tensor): The input tensor to the model. |
|
|
profile (bool): Print the computation time of each layer if True, defaults to False. |
|
|
visualize (bool): Save the feature maps of the model if True, defaults to False. |
|
|
augment (bool): Augment image during prediction, defaults to False. |
|
|
embed (list, optional): A list of feature vectors/embeddings to return. |
|
|
|
|
|
Returns: |
|
|
(torch.Tensor): The last output of the model. |
|
|
""" |
|
|
if augment: |
|
|
return self._predict_augment(x) |
|
|
return self._predict_once(x, profile, visualize, embed) |
|
|
|
|
|
def _predict_once(self, x, profile=False, visualize=False, embed=None): |
|
|
""" |
|
|
Perform a forward pass through the network. |
|
|
|
|
|
Args: |
|
|
x (torch.Tensor): The input tensor to the model. |
|
|
profile (bool): Print the computation time of each layer if True, defaults to False. |
|
|
visualize (bool): Save the feature maps of the model if True, defaults to False. |
|
|
embed (list, optional): A list of feature vectors/embeddings to return. |
|
|
|
|
|
Returns: |
|
|
(torch.Tensor): The last output of the model. |
|
|
""" |
|
|
y, dt, embeddings = [], [], [] # outputs |
|
|
for m in self.model: |
|
|
if m.f != -1: # if not from previous layer |
|
|
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers |
|
|
if profile: |
|
|
self._profile_one_layer(m, x, dt) |
|
|
x = m(x) # run |
|
|
y.append(x if m.i in self.save else None) # save output |
|
|
if visualize: |
|
|
feature_visualization(x, m.type, m.i, save_dir=visualize) |
|
|
if embed and m.i in embed: |
|
|
embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1)) # flatten |
|
|
if m.i == max(embed): |
|
|
return torch.unbind(torch.cat(embeddings, 1), dim=0) |
|
|
return x |
|
|
|
|
|
def _predict_augment(self, x): |
|
|
"""Perform augmentations on input image x and return augmented inference.""" |
|
|
LOGGER.warning(f'WARNING ⚠️ {self.__class__.__name__} does not support augmented inference yet. ' |
|
|
f'Reverting to single-scale inference instead.') |
|
|
return self._predict_once(x) |
|
|
|
|
|
def _profile_one_layer(self, m, x, dt): |
|
|
""" |
|
|
Profile the computation time and FLOPs of a single layer of the model on a given input. Appends the results to |
|
|
the provided list. |
|
|
|
|
|
Args: |
|
|
m (nn.Module): The layer to be profiled. |
|
|
x (torch.Tensor): The input data to the layer. |
|
|
dt (list): A list to store the computation time of the layer. |
|
|
|
|
|
Returns: |
|
|
None |
|
|
""" |
|
|
c = m == self.model[-1] and isinstance(x, list) # is final layer list, copy input as inplace fix |
|
|
flops = thop.profile(m, inputs=[x.copy() if c else x], verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs |
|
|
t = time_sync() |
|
|
for _ in range(10): |
|
|
m(x.copy() if c else x) |
|
|
dt.append((time_sync() - t) * 100) |
|
|
if m == self.model[0]: |
|
|
LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} module") |
|
|
LOGGER.info(f'{dt[-1]:10.2f} {flops:10.2f} {m.np:10.0f} {m.type}') |
|
|
if c: |
|
|
LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total") |
|
|
|
|
|
def fuse(self, verbose=True): |
|
|
""" |
|
|
Fuse the `Conv2d()` and `BatchNorm2d()` layers of the model into a single layer, in order to improve the |
|
|
computation efficiency. |
|
|
|
|
|
Returns: |
|
|
(nn.Module): The fused model is returned. |
|
|
""" |
|
|
if not self.is_fused(): |
|
|
for m in self.model.modules(): |
|
|
if isinstance(m, (Conv, Conv2, DWConv)) and hasattr(m, 'bn'): |
|
|
if isinstance(m, Conv2): |
|
|
m.fuse_convs() |
|
|
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv |
|
|
delattr(m, 'bn') # remove batchnorm |
|
|
m.forward = m.forward_fuse # update forward |
|
|
if isinstance(m, ConvTranspose) and hasattr(m, 'bn'): |
|
|
m.conv_transpose = fuse_deconv_and_bn(m.conv_transpose, m.bn) |
|
|
delattr(m, 'bn') # remove batchnorm |
|
|
m.forward = m.forward_fuse # update forward |
|
|
if isinstance(m, RepConv): |
|
|
m.fuse_convs() |
|
|
m.forward = m.forward_fuse # update forward |
|
|
self.info(verbose=verbose) |
|
|
|
|
|
return self |
|
|
|
|
|
def is_fused(self, thresh=10): |
|
|
""" |
|
|
Check if the model has less than a certain threshold of BatchNorm layers. |
|
|
|
|
|
Args: |
|
|
thresh (int, optional): The threshold number of BatchNorm layers. Default is 10. |
|
|
|
|
|
Returns: |
|
|
(bool): True if the number of BatchNorm layers in the model is less than the threshold, False otherwise. |
|
|
""" |
|
|
bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k) # normalization layers, i.e. BatchNorm2d() |
|
|
return sum(isinstance(v, bn) for v in self.modules()) < thresh # True if < 'thresh' BatchNorm layers in model |
|
|
|
|
|
def info(self, detailed=False, verbose=True, imgsz=640): |
|
|
""" |
|
|
Prints model information. |
|
|
|
|
|
Args: |
|
|
detailed (bool): if True, prints out detailed information about the model. Defaults to False |
|
|
verbose (bool): if True, prints out the model information. Defaults to False |
|
|
imgsz (int): the size of the image that the model will be trained on. Defaults to 640 |
|
|
""" |
|
|
return model_info(self, detailed=detailed, verbose=verbose, imgsz=imgsz) |
|
|
|
|
|
def _apply(self, fn): |
|
|
""" |
|
|
Applies a function to all the tensors in the model that are not parameters or registered buffers. |
|
|
|
|
|
Args: |
|
|
fn (function): the function to apply to the model |
|
|
|
|
|
Returns: |
|
|
(BaseModel): An updated BaseModel object. |
|
|
""" |
|
|
self = super()._apply(fn) |
|
|
m = self.model[-1] # Detect() |
|
|
if isinstance(m, (Detect, Segment)): |
|
|
m.stride = fn(m.stride) |
|
|
m.anchors = fn(m.anchors) |
|
|
m.strides = fn(m.strides) |
|
|
return self |
|
|
|
|
|
def load(self, weights, verbose=True): |
|
|
""" |
|
|
Load the weights into the model. |
|
|
|
|
|
Args: |
|
|
weights (dict | torch.nn.Module): The pre-trained weights to be loaded. |
|
|
verbose (bool, optional): Whether to log the transfer progress. Defaults to True. |
|
|
""" |
|
|
model = weights['model'] if isinstance(weights, dict) else weights # torchvision models are not dicts |
|
|
csd = model.float().state_dict() # checkpoint state_dict as FP32 |
|
|
csd = intersect_dicts(csd, self.state_dict()) # intersect |
|
|
self.load_state_dict(csd, strict=False) # load |
|
|
if verbose: |
|
|
LOGGER.info(f'Transferred {len(csd)}/{len(self.model.state_dict())} items from pretrained weights') |
|
|
|
|
|
def loss(self, batch, preds=None): |
|
|
""" |
|
|
Compute loss. |
|
|
|
|
|
Args: |
|
|
batch (dict): Batch to compute loss on |
|
|
preds (torch.Tensor | List[torch.Tensor]): Predictions. |
|
|
""" |
|
|
if not hasattr(self, 'criterion'): |
|
|
self.criterion = self.init_criterion() |
|
|
|
|
|
preds = self.forward(batch['img']) if preds is None else preds |
|
|
return self.criterion(preds, batch) |
|
|
|
|
|
def init_criterion(self): |
|
|
"""Initialize the loss criterion for the BaseModel.""" |
|
|
raise NotImplementedError('compute_loss() needs to be implemented by task heads') |
|
|
|
|
|
|
|
|
class DetectionModel(BaseModel): |
|
|
"""YOLOv8 detection model.""" |
|
|
|
|
|
def __init__(self, cfg='yolov8n.yaml', ch=3, nc=None, verbose=True): # model, input channels, number of classes |
|
|
"""Initialize the YOLOv8 detection model with the given config and parameters.""" |
|
|
super().__init__() |
|
|
self.yaml = cfg if isinstance(cfg, dict) else yaml_model_load(cfg) # cfg dict |
|
|
|
|
|
# Define model |
|
|
ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels |
|
|
if nc and nc != self.yaml['nc']: |
|
|
LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}") |
|
|
self.yaml['nc'] = nc # override YAML value |
|
|
self.model, self.save = parse_model(deepcopy(self.yaml), ch=ch, verbose=verbose) # model, savelist |
|
|
self.names = {i: f'{i}' for i in range(self.yaml['nc'])} # default names dict |
|
|
self.inplace = self.yaml.get('inplace', True) |
|
|
|
|
|
# Build strides |
|
|
m = self.model[-1] # Detect() |
|
|
if isinstance(m, (Detect, Segment, Pose, OBB)): |
|
|
s = 256 # 2x min stride |
|
|
m.inplace = self.inplace |
|
|
forward = lambda x: self.forward(x)[0] if isinstance(m, (Segment, Pose, OBB)) else self.forward(x) |
|
|
m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))]) # forward |
|
|
self.stride = m.stride |
|
|
m.bias_init() # only run once |
|
|
else: |
|
|
self.stride = torch.Tensor([32]) # default stride for i.e. RTDETR |
|
|
|
|
|
# Init weights, biases |
|
|
initialize_weights(self) |
|
|
if verbose: |
|
|
self.info() |
|
|
LOGGER.info('') |
|
|
|
|
|
def _predict_augment(self, x): |
|
|
"""Perform augmentations on input image x and return augmented inference and train outputs.""" |
|
|
img_size = x.shape[-2:] # height, width |
|
|
s = [1, 0.83, 0.67] # scales |
|
|
f = [None, 3, None] # flips (2-ud, 3-lr) |
|
|
y = [] # outputs |
|
|
for si, fi in zip(s, f): |
|
|
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max())) |
|
|
yi = super().predict(xi)[0] # forward |
|
|
yi = self._descale_pred(yi, fi, si, img_size) |
|
|
y.append(yi) |
|
|
y = self._clip_augmented(y) # clip augmented tails |
|
|
return torch.cat(y, -1), None # augmented inference, train |
|
|
|
|
|
@staticmethod |
|
|
def _descale_pred(p, flips, scale, img_size, dim=1): |
|
|
"""De-scale predictions following augmented inference (inverse operation).""" |
|
|
p[:, :4] /= scale # de-scale |
|
|
x, y, wh, cls = p.split((1, 1, 2, p.shape[dim] - 4), dim) |
|
|
if flips == 2: |
|
|
y = img_size[0] - y # de-flip ud |
|
|
elif flips == 3: |
|
|
x = img_size[1] - x # de-flip lr |
|
|
return torch.cat((x, y, wh, cls), dim) |
|
|
|
|
|
def _clip_augmented(self, y): |
|
|
"""Clip YOLO augmented inference tails.""" |
|
|
nl = self.model[-1].nl # number of detection layers (P3-P5) |
|
|
g = sum(4 ** x for x in range(nl)) # grid points |
|
|
e = 1 # exclude layer count |
|
|
i = (y[0].shape[-1] // g) * sum(4 ** x for x in range(e)) # indices |
|
|
y[0] = y[0][..., :-i] # large |
|
|
i = (y[-1].shape[-1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices |
|
|
y[-1] = y[-1][..., i:] # small |
|
|
return y |
|
|
|
|
|
def init_criterion(self): |
|
|
"""Initialize the loss criterion for the DetectionModel.""" |
|
|
return v8DetectionLoss(self) |
|
|
|
|
|
|
|
|
class OBBModel(DetectionModel): |
|
|
""""YOLOv8 Oriented Bounding Box (OBB) model.""" |
|
|
|
|
|
def __init__(self, cfg='yolov8n-obb.yaml', ch=3, nc=None, verbose=True): |
|
|
"""Initialize YOLOv8 OBB model with given config and parameters.""" |
|
|
super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose) |
|
|
|
|
|
def init_criterion(self): |
|
|
"""Initialize the loss criterion for the model.""" |
|
|
return v8OBBLoss(self) |
|
|
|
|
|
|
|
|
class SegmentationModel(DetectionModel): |
|
|
"""YOLOv8 segmentation model.""" |
|
|
|
|
|
def __init__(self, cfg='yolov8n-seg.yaml', ch=3, nc=None, verbose=True): |
|
|
"""Initialize YOLOv8 segmentation model with given config and parameters.""" |
|
|
super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose) |
|
|
|
|
|
def init_criterion(self): |
|
|
"""Initialize the loss criterion for the SegmentationModel.""" |
|
|
return v8SegmentationLoss(self) |
|
|
|
|
|
|
|
|
class PoseModel(DetectionModel): |
|
|
"""YOLOv8 pose model.""" |
|
|
|
|
|
def __init__(self, cfg='yolov8n-pose.yaml', ch=3, nc=None, data_kpt_shape=(None, None), verbose=True): |
|
|
"""Initialize YOLOv8 Pose model.""" |
|
|
if not isinstance(cfg, dict): |
|
|
cfg = yaml_model_load(cfg) # load model YAML |
|
|
if any(data_kpt_shape) and list(data_kpt_shape) != list(cfg['kpt_shape']): |
|
|
LOGGER.info(f"Overriding model.yaml kpt_shape={cfg['kpt_shape']} with kpt_shape={data_kpt_shape}") |
|
|
cfg['kpt_shape'] = data_kpt_shape |
|
|
super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose) |
|
|
|
|
|
def init_criterion(self): |
|
|
"""Initialize the loss criterion for the PoseModel.""" |
|
|
return v8PoseLoss(self) |
|
|
|
|
|
|
|
|
class ClassificationModel(BaseModel): |
|
|
"""YOLOv8 classification model.""" |
|
|
|
|
|
def __init__(self, cfg='yolov8n-cls.yaml', ch=3, nc=None, verbose=True): |
|
|
"""Init ClassificationModel with YAML, channels, number of classes, verbose flag.""" |
|
|
super().__init__() |
|
|
self._from_yaml(cfg, ch, nc, verbose) |
|
|
|
|
|
def _from_yaml(self, cfg, ch, nc, verbose): |
|
|
"""Set YOLOv8 model configurations and define the model architecture.""" |
|
|
self.yaml = cfg if isinstance(cfg, dict) else yaml_model_load(cfg) # cfg dict |
|
|
|
|
|
# Define model |
|
|
ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels |
|
|
if nc and nc != self.yaml['nc']: |
|
|
LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}") |
|
|
self.yaml['nc'] = nc # override YAML value |
|
|
elif not nc and not self.yaml.get('nc', None): |
|
|
raise ValueError('nc not specified. Must specify nc in model.yaml or function arguments.') |
|
|
self.model, self.save = parse_model(deepcopy(self.yaml), ch=ch, verbose=verbose) # model, savelist |
|
|
self.stride = torch.Tensor([1]) # no stride constraints |
|
|
self.names = {i: f'{i}' for i in range(self.yaml['nc'])} # default names dict |
|
|
self.info() |
|
|
|
|
|
@staticmethod |
|
|
def reshape_outputs(model, nc): |
|
|
"""Update a TorchVision classification model to class count 'n' if required.""" |
|
|
name, m = list((model.model if hasattr(model, 'model') else model).named_children())[-1] # last module |
|
|
if isinstance(m, Classify): # YOLO Classify() head |
|
|
if m.linear.out_features != nc: |
|
|
m.linear = nn.Linear(m.linear.in_features, nc) |
|
|
elif isinstance(m, nn.Linear): # ResNet, EfficientNet |
|
|
if m.out_features != nc: |
|
|
setattr(model, name, nn.Linear(m.in_features, nc)) |
|
|
elif isinstance(m, nn.Sequential): |
|
|
types = [type(x) for x in m] |
|
|
if nn.Linear in types: |
|
|
i = types.index(nn.Linear) # nn.Linear index |
|
|
if m[i].out_features != nc: |
|
|
m[i] = nn.Linear(m[i].in_features, nc) |
|
|
elif nn.Conv2d in types: |
|
|
i = types.index(nn.Conv2d) # nn.Conv2d index |
|
|
if m[i].out_channels != nc: |
|
|
m[i] = nn.Conv2d(m[i].in_channels, nc, m[i].kernel_size, m[i].stride, bias=m[i].bias is not None) |
|
|
|
|
|
def init_criterion(self): |
|
|
"""Initialize the loss criterion for the ClassificationModel.""" |
|
|
return v8ClassificationLoss() |
|
|
|
|
|
|
|
|
class RTDETRDetectionModel(DetectionModel): |
|
|
""" |
|
|
RTDETR (Real-time DEtection and Tracking using Transformers) Detection Model class. |
|
|
|
|
|
This class is responsible for constructing the RTDETR architecture, defining loss functions, and facilitating both |
|
|
the training and inference processes. RTDETR is an object detection and tracking model that extends from the |
|
|
DetectionModel base class. |
|
|
|
|
|
Attributes: |
|
|
cfg (str): The configuration file path or preset string. Default is 'rtdetr-l.yaml'. |
|
|
ch (int): Number of input channels. Default is 3 (RGB). |
|
|
nc (int, optional): Number of classes for object detection. Default is None. |
|
|
verbose (bool): Specifies if summary statistics are shown during initialization. Default is True. |
|
|
|
|
|
Methods: |
|
|
init_criterion: Initializes the criterion used for loss calculation. |
|
|
loss: Computes and returns the loss during training. |
|
|
predict: Performs a forward pass through the network and returns the output. |
|
|
""" |
|
|
|
|
|
def __init__(self, cfg='rtdetr-l.yaml', ch=3, nc=None, verbose=True): |
|
|
""" |
|
|
Initialize the RTDETRDetectionModel. |
|
|
|
|
|
Args: |
|
|
cfg (str): Configuration file name or path. |
|
|
ch (int): Number of input channels. |
|
|
nc (int, optional): Number of classes. Defaults to None. |
|
|
verbose (bool, optional): Print additional information during initialization. Defaults to True. |
|
|
""" |
|
|
super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose) |
|
|
|
|
|
def init_criterion(self): |
|
|
"""Initialize the loss criterion for the RTDETRDetectionModel.""" |
|
|
from ultralytics.models.utils.loss import RTDETRDetectionLoss |
|
|
|
|
|
return RTDETRDetectionLoss(nc=self.nc, use_vfl=True) |
|
|
|
|
|
def loss(self, batch, preds=None): |
|
|
""" |
|
|
Compute the loss for the given batch of data. |
|
|
|
|
|
Args: |
|
|
batch (dict): Dictionary containing image and label data. |
|
|
preds (torch.Tensor, optional): Precomputed model predictions. Defaults to None. |
|
|
|
|
|
Returns: |
|
|
(tuple): A tuple containing the total loss and main three losses in a tensor. |
|
|
""" |
|
|
if not hasattr(self, 'criterion'): |
|
|
self.criterion = self.init_criterion() |
|
|
|
|
|
img = batch['img'] |
|
|
# NOTE: preprocess gt_bbox and gt_labels to list. |
|
|
bs = len(img) |
|
|
batch_idx = batch['batch_idx'] |
|
|
gt_groups = [(batch_idx == i).sum().item() for i in range(bs)] |
|
|
targets = { |
|
|
'cls': batch['cls'].to(img.device, dtype=torch.long).view(-1), |
|
|
'bboxes': batch['bboxes'].to(device=img.device), |
|
|
'batch_idx': batch_idx.to(img.device, dtype=torch.long).view(-1), |
|
|
'gt_groups': gt_groups} |
|
|
|
|
|
preds = self.predict(img, batch=targets) if preds is None else preds |
|
|
dec_bboxes, dec_scores, enc_bboxes, enc_scores, dn_meta = preds if self.training else preds[1] |
|
|
if dn_meta is None: |
|
|
dn_bboxes, dn_scores = None, None |
|
|
else: |
|
|
dn_bboxes, dec_bboxes = torch.split(dec_bboxes, dn_meta['dn_num_split'], dim=2) |
|
|
dn_scores, dec_scores = torch.split(dec_scores, dn_meta['dn_num_split'], dim=2) |
|
|
|
|
|
dec_bboxes = torch.cat([enc_bboxes.unsqueeze(0), dec_bboxes]) # (7, bs, 300, 4) |
|
|
dec_scores = torch.cat([enc_scores.unsqueeze(0), dec_scores]) |
|
|
|
|
|
loss = self.criterion((dec_bboxes, dec_scores), |
|
|
targets, |
|
|
dn_bboxes=dn_bboxes, |
|
|
dn_scores=dn_scores, |
|
|
dn_meta=dn_meta) |
|
|
# NOTE: There are like 12 losses in RTDETR, backward with all losses but only show the main three losses. |
|
|
return sum(loss.values()), torch.as_tensor([loss[k].detach() for k in ['loss_giou', 'loss_class', 'loss_bbox']], |
|
|
device=img.device) |
|
|
|
|
|
def predict(self, x, profile=False, visualize=False, batch=None, augment=False, embed=None): |
|
|
""" |
|
|
Perform a forward pass through the model. |
|
|
|
|
|
Args: |
|
|
x (torch.Tensor): The input tensor. |
|
|
profile (bool, optional): If True, profile the computation time for each layer. Defaults to False. |
|
|
visualize (bool, optional): If True, save feature maps for visualization. Defaults to False. |
|
|
batch (dict, optional): Ground truth data for evaluation. Defaults to None. |
|
|
augment (bool, optional): If True, perform data augmentation during inference. Defaults to False. |
|
|
embed (list, optional): A list of feature vectors/embeddings to return. |
|
|
|
|
|
Returns: |
|
|
(torch.Tensor): Model's output tensor. |
|
|
""" |
|
|
y, dt, embeddings = [], [], [] # outputs |
|
|
for m in self.model[:-1]: # except the head part |
|
|
if m.f != -1: # if not from previous layer |
|
|
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers |
|
|
if profile: |
|
|
self._profile_one_layer(m, x, dt) |
|
|
x = m(x) # run |
|
|
y.append(x if m.i in self.save else None) # save output |
|
|
if visualize: |
|
|
feature_visualization(x, m.type, m.i, save_dir=visualize) |
|
|
if embed and m.i in embed: |
|
|
embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1)) # flatten |
|
|
if m.i == max(embed): |
|
|
return torch.unbind(torch.cat(embeddings, 1), dim=0) |
|
|
head = self.model[-1] |
|
|
x = head([y[j] for j in head.f], batch) # head inference |
|
|
return x |
|
|
|
|
|
|
|
|
class Ensemble(nn.ModuleList): |
|
|
"""Ensemble of models.""" |
|
|
|
|
|
def __init__(self): |
|
|
"""Initialize an ensemble of models.""" |
|
|
super().__init__() |
|
|
|
|
|
def forward(self, x, augment=False, profile=False, visualize=False): |
|
|
"""Function generates the YOLO network's final layer.""" |
|
|
y = [module(x, augment, profile, visualize)[0] for module in self] |
|
|
# y = torch.stack(y).max(0)[0] # max ensemble |
|
|
# y = torch.stack(y).mean(0) # mean ensemble |
|
|
y = torch.cat(y, 2) # nms ensemble, y shape(B, HW, C) |
|
|
return y, None # inference, train output |
|
|
|
|
|
|
|
|
# Functions ------------------------------------------------------------------------------------------------------------ |
|
|
|
|
|
|
|
|
@contextlib.contextmanager |
|
|
def temporary_modules(modules=None): |
|
|
""" |
|
|
Context manager for temporarily adding or modifying modules in Python's module cache (`sys.modules`). |
|
|
|
|
|
This function can be used to change the module paths during runtime. It's useful when refactoring code, |
|
|
where you've moved a module from one location to another, but you still want to support the old import |
|
|
paths for backwards compatibility. |
|
|
|
|
|
Args: |
|
|
modules (dict, optional): A dictionary mapping old module paths to new module paths. |
|
|
|
|
|
Example: |
|
|
```python |
|
|
with temporary_modules({'old.module.path': 'new.module.path'}): |
|
|
import old.module.path # this will now import new.module.path |
|
|
``` |
|
|
|
|
|
Note: |
|
|
The changes are only in effect inside the context manager and are undone once the context manager exits. |
|
|
Be aware that directly manipulating `sys.modules` can lead to unpredictable results, especially in larger |
|
|
applications or libraries. Use this function with caution. |
|
|
""" |
|
|
if not modules: |
|
|
modules = {} |
|
|
|
|
|
import importlib |
|
|
import sys |
|
|
try: |
|
|
# Set modules in sys.modules under their old name |
|
|
for old, new in modules.items(): |
|
|
sys.modules[old] = importlib.import_module(new) |
|
|
|
|
|
yield |
|
|
finally: |
|
|
# Remove the temporary module paths |
|
|
for old in modules: |
|
|
if old in sys.modules: |
|
|
del sys.modules[old] |
|
|
|
|
|
|
|
|
def torch_safe_load(weight): |
|
|
""" |
|
|
This function attempts to load a PyTorch model with the torch.load() function. If a ModuleNotFoundError is raised, |
|
|
it catches the error, logs a warning message, and attempts to install the missing module via the |
|
|
check_requirements() function. After installation, the function again attempts to load the model using torch.load(). |
|
|
|
|
|
Args: |
|
|
weight (str): The file path of the PyTorch model. |
|
|
|
|
|
Returns: |
|
|
(dict): The loaded PyTorch model. |
|
|
""" |
|
|
from ultralytics.utils.downloads import attempt_download_asset |
|
|
|
|
|
check_suffix(file=weight, suffix='.pt') |
|
|
file = attempt_download_asset(weight) # search online if missing locally |
|
|
try: |
|
|
with temporary_modules({ |
|
|
'ultralytics.yolo.utils': 'ultralytics.utils', |
|
|
'ultralytics.yolo.v8': 'ultralytics.models.yolo', |
|
|
'ultralytics.yolo.data': 'ultralytics.data'}): # for legacy 8.0 Classify and Pose models |
|
|
return torch.load(file, map_location='cpu'), file # load |
|
|
|
|
|
except ModuleNotFoundError as e: # e.name is missing module name |
|
|
if e.name == 'models': |
|
|
raise TypeError( |
|
|
emojis(f'ERROR ❌️ {weight} appears to be an Ultralytics YOLOv5 model originally trained ' |
|
|
f'with https://github.com/ultralytics/yolov5.\nThis model is NOT forwards compatible with ' |
|
|
f'YOLOv8 at https://github.com/ultralytics/ultralytics.' |
|
|
f"\nRecommend fixes are to train a new model using the latest 'ultralytics' package or to " |
|
|
f"run a command with an official YOLOv8 model, i.e. 'yolo predict model=yolov8n.pt'")) from e |
|
|
LOGGER.warning(f"WARNING ⚠️ {weight} appears to require '{e.name}', which is not in ultralytics requirements." |
|
|
f"\nAutoInstall will run now for '{e.name}' but this feature will be removed in the future." |
|
|
f"\nRecommend fixes are to train a new model using the latest 'ultralytics' package or to " |
|
|
f"run a command with an official YOLOv8 model, i.e. 'yolo predict model=yolov8n.pt'") |
|
|
check_requirements(e.name) # install missing module |
|
|
|
|
|
return torch.load(file, map_location='cpu'), file # load |
|
|
|
|
|
|
|
|
def attempt_load_weights(weights, device=None, inplace=True, fuse=False): |
|
|
"""Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a.""" |
|
|
|
|
|
ensemble = Ensemble() |
|
|
for w in weights if isinstance(weights, list) else [weights]: |
|
|
ckpt, w = torch_safe_load(w) # load ckpt |
|
|
args = {**DEFAULT_CFG_DICT, **ckpt['train_args']} if 'train_args' in ckpt else None # combined args |
|
|
model = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model |
|
|
|
|
|
# Model compatibility updates |
|
|
model.args = args # attach args to model |
|
|
model.pt_path = w # attach *.pt file path to model |
|
|
model.task = guess_model_task(model) |
|
|
if not hasattr(model, 'stride'): |
|
|
model.stride = torch.tensor([32.]) |
|
|
|
|
|
# Append |
|
|
ensemble.append(model.fuse().eval() if fuse and hasattr(model, 'fuse') else model.eval()) # model in eval mode |
|
|
|
|
|
# Module updates |
|
|
for m in ensemble.modules(): |
|
|
t = type(m) |
|
|
if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Segment, Pose, OBB): |
|
|
m.inplace = inplace |
|
|
elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'): |
|
|
m.recompute_scale_factor = None # torch 1.11.0 compatibility |
|
|
|
|
|
# Return model |
|
|
if len(ensemble) == 1: |
|
|
return ensemble[-1] |
|
|
|
|
|
# Return ensemble |
|
|
LOGGER.info(f'Ensemble created with {weights}\n') |
|
|
for k in 'names', 'nc', 'yaml': |
|
|
setattr(ensemble, k, getattr(ensemble[0], k)) |
|
|
ensemble.stride = ensemble[torch.argmax(torch.tensor([m.stride.max() for m in ensemble])).int()].stride |
|
|
assert all(ensemble[0].nc == m.nc for m in ensemble), f'Models differ in class counts {[m.nc for m in ensemble]}' |
|
|
return ensemble |
|
|
|
|
|
|
|
|
def attempt_load_one_weight(weight, device=None, inplace=True, fuse=False): |
|
|
"""Loads a single model weights.""" |
|
|
ckpt, weight = torch_safe_load(weight) # load ckpt |
|
|
args = {**DEFAULT_CFG_DICT, **(ckpt.get('train_args', {}))} # combine model and default args, preferring model args |
|
|
model = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model |
|
|
|
|
|
# Model compatibility updates |
|
|
model.args = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS} # attach args to model |
|
|
model.pt_path = weight # attach *.pt file path to model |
|
|
model.task = guess_model_task(model) |
|
|
if not hasattr(model, 'stride'): |
|
|
model.stride = torch.tensor([32.]) |
|
|
|
|
|
model = model.fuse().eval() if fuse and hasattr(model, 'fuse') else model.eval() # model in eval mode |
|
|
|
|
|
# Module updates |
|
|
for m in model.modules(): |
|
|
t = type(m) |
|
|
if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Segment, Pose, OBB): |
|
|
m.inplace = inplace |
|
|
elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'): |
|
|
m.recompute_scale_factor = None # torch 1.11.0 compatibility |
|
|
|
|
|
# Return model and ckpt |
|
|
return model, ckpt |
|
|
|
|
|
|
|
|
def parse_model(d, ch, verbose=True): # model_dict, input_channels(3) |
|
|
"""Parse a YOLO model.yaml dictionary into a PyTorch model.""" |
|
|
import ast |
|
|
|
|
|
# Args |
|
|
max_channels = float('inf') |
|
|
nc, act, scales = (d.get(x) for x in ('nc', 'activation', 'scales')) |
|
|
depth, width, kpt_shape = (d.get(x, 1.0) for x in ('depth_multiple', 'width_multiple', 'kpt_shape')) |
|
|
if scales: |
|
|
scale = d.get('scale') |
|
|
if not scale: |
|
|
scale = tuple(scales.keys())[0] |
|
|
LOGGER.warning(f"WARNING ⚠️ no model scale passed. Assuming scale='{scale}'.") |
|
|
depth, width, max_channels = scales[scale] |
|
|
|
|
|
if act: |
|
|
Conv.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU() |
|
|
if verbose: |
|
|
LOGGER.info(f"{colorstr('activation:')} {act}") # print |
|
|
|
|
|
if verbose: |
|
|
LOGGER.info(f"\n{'':>3}{'from':>20}{'n':>3}{'params':>10} {'module':<45}{'arguments':<30}") |
|
|
ch = [ch] |
|
|
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out |
|
|
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args |
|
|
m = getattr(torch.nn, m[3:]) if 'nn.' in m else globals()[m] # get module |
|
|
for j, a in enumerate(args): |
|
|
if isinstance(a, str): |
|
|
with contextlib.suppress(ValueError): |
|
|
args[j] = locals()[a] if a in locals() else ast.literal_eval(a) |
|
|
|
|
|
n = n_ = max(round(n * depth), 1) if n > 1 else n # depth gain |
|
|
if m in (Classify, Conv, ConvTranspose, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, Focus, |
|
|
BottleneckCSP, C1, C2, C2f, C3, C3TR, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x, RepC3): |
|
|
c1, c2 = ch[f], args[0] |
|
|
if c2 != nc: # if c2 not equal to number of classes (i.e. for Classify() output) |
|
|
c2 = make_divisible(min(c2, max_channels) * width, 8) |
|
|
|
|
|
args = [c1, c2, *args[1:]] |
|
|
if m in (BottleneckCSP, C1, C2, C2f, C3, C3TR, C3Ghost, C3x, RepC3): |
|
|
args.insert(2, n) # number of repeats |
|
|
n = 1 |
|
|
elif m is AIFI: |
|
|
args = [ch[f], *args] |
|
|
elif m in (HGStem, HGBlock): |
|
|
c1, cm, c2 = ch[f], args[0], args[1] |
|
|
args = [c1, cm, c2, *args[2:]] |
|
|
if m is HGBlock: |
|
|
args.insert(4, n) # number of repeats |
|
|
n = 1 |
|
|
elif m is ResNetLayer: |
|
|
c2 = args[1] if args[3] else args[1] * 4 |
|
|
elif m is nn.BatchNorm2d: |
|
|
args = [ch[f]] |
|
|
elif m is Concat: |
|
|
c2 = sum(ch[x] for x in f) |
|
|
elif m in (Detect, Segment, Pose, OBB): |
|
|
args.append([ch[x] for x in f]) |
|
|
if m is Segment: |
|
|
args[2] = make_divisible(min(args[2], max_channels) * width, 8) |
|
|
elif m is RTDETRDecoder: # special case, channels arg must be passed in index 1 |
|
|
args.insert(1, [ch[x] for x in f]) |
|
|
else: |
|
|
c2 = ch[f] |
|
|
|
|
|
m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module |
|
|
t = str(m)[8:-2].replace('__main__.', '') # module type |
|
|
m.np = sum(x.numel() for x in m_.parameters()) # number params |
|
|
m_.i, m_.f, m_.type = i, f, t # attach index, 'from' index, type |
|
|
if verbose: |
|
|
LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f} {t:<45}{str(args):<30}') # print |
|
|
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist |
|
|
layers.append(m_) |
|
|
if i == 0: |
|
|
ch = [] |
|
|
ch.append(c2) |
|
|
return nn.Sequential(*layers), sorted(save) |
|
|
|
|
|
|
|
|
def yaml_model_load(path): |
|
|
"""Load a YOLOv8 model from a YAML file.""" |
|
|
import re |
|
|
|
|
|
path = Path(path) |
|
|
if path.stem in (f'yolov{d}{x}6' for x in 'nsmlx' for d in (5, 8)): |
|
|
new_stem = re.sub(r'(\d+)([nslmx])6(.+)?$', r'\1\2-p6\3', path.stem) |
|
|
LOGGER.warning(f'WARNING ⚠️ Ultralytics YOLO P6 models now use -p6 suffix. Renaming {path.stem} to {new_stem}.') |
|
|
path = path.with_name(new_stem + path.suffix) |
|
|
|
|
|
unified_path = re.sub(r'(\d+)([nslmx])(.+)?$', r'\1\3', str(path)) # i.e. yolov8x.yaml -> yolov8.yaml |
|
|
yaml_file = check_yaml(unified_path, hard=False) or check_yaml(path) |
|
|
d = yaml_load(yaml_file) # model dict |
|
|
d['scale'] = guess_model_scale(path) |
|
|
d['yaml_file'] = str(path) |
|
|
return d |
|
|
|
|
|
|
|
|
def guess_model_scale(model_path): |
|
|
""" |
|
|
Takes a path to a YOLO model's YAML file as input and extracts the size character of the model's scale. The function |
|
|
uses regular expression matching to find the pattern of the model scale in the YAML file name, which is denoted by |
|
|
n, s, m, l, or x. The function returns the size character of the model scale as a string. |
|
|
|
|
|
Args: |
|
|
model_path (str | Path): The path to the YOLO model's YAML file. |
|
|
|
|
|
Returns: |
|
|
(str): The size character of the model's scale, which can be n, s, m, l, or x. |
|
|
""" |
|
|
with contextlib.suppress(AttributeError): |
|
|
import re |
|
|
return re.search(r'yolov\d+([nslmx])', Path(model_path).stem).group(1) # n, s, m, l, or x |
|
|
return '' |
|
|
|
|
|
|
|
|
def guess_model_task(model): |
|
|
""" |
|
|
Guess the task of a PyTorch model from its architecture or configuration. |
|
|
|
|
|
Args: |
|
|
model (nn.Module | dict): PyTorch model or model configuration in YAML format. |
|
|
|
|
|
Returns: |
|
|
(str): Task of the model ('detect', 'segment', 'classify', 'pose'). |
|
|
|
|
|
Raises: |
|
|
SyntaxError: If the task of the model could not be determined. |
|
|
""" |
|
|
|
|
|
def cfg2task(cfg): |
|
|
"""Guess from YAML dictionary.""" |
|
|
m = cfg['head'][-1][-2].lower() # output module name |
|
|
if m in ('classify', 'classifier', 'cls', 'fc'): |
|
|
return 'classify' |
|
|
if m == 'detect': |
|
|
return 'detect' |
|
|
if m == 'segment': |
|
|
return 'segment' |
|
|
if m == 'pose': |
|
|
return 'pose' |
|
|
if m == 'obb': |
|
|
return 'obb' |
|
|
|
|
|
# Guess from model cfg |
|
|
if isinstance(model, dict): |
|
|
with contextlib.suppress(Exception): |
|
|
return cfg2task(model) |
|
|
|
|
|
# Guess from PyTorch model |
|
|
if isinstance(model, nn.Module): # PyTorch model |
|
|
for x in 'model.args', 'model.model.args', 'model.model.model.args': |
|
|
with contextlib.suppress(Exception): |
|
|
return eval(x)['task'] |
|
|
for x in 'model.yaml', 'model.model.yaml', 'model.model.model.yaml': |
|
|
with contextlib.suppress(Exception): |
|
|
return cfg2task(eval(x)) |
|
|
|
|
|
for m in model.modules(): |
|
|
if isinstance(m, Detect): |
|
|
return 'detect' |
|
|
elif isinstance(m, Segment): |
|
|
return 'segment' |
|
|
elif isinstance(m, Classify): |
|
|
return 'classify' |
|
|
elif isinstance(m, Pose): |
|
|
return 'pose' |
|
|
elif isinstance(m, OBB): |
|
|
return 'obb' |
|
|
|
|
|
# Guess from model filename |
|
|
if isinstance(model, (str, Path)): |
|
|
model = Path(model) |
|
|
if '-seg' in model.stem or 'segment' in model.parts: |
|
|
return 'segment' |
|
|
elif '-cls' in model.stem or 'classify' in model.parts: |
|
|
return 'classify' |
|
|
elif '-pose' in model.stem or 'pose' in model.parts: |
|
|
return 'pose' |
|
|
elif '-obb' in model.stem or 'obb' in model.parts: |
|
|
return 'obb' |
|
|
elif 'detect' in model.parts: |
|
|
return 'detect' |
|
|
|
|
|
# Unable to determine task from model |
|
|
LOGGER.warning("WARNING ⚠️ Unable to automatically guess model task, assuming 'task=detect'. " |
|
|
"Explicitly define task for your model, i.e. 'task=detect', 'segment', 'classify','pose' or 'obb'.") |
|
|
return 'detect' # assume detect
|
|
|
|