You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
549 lines
23 KiB
549 lines
23 KiB
""" |
|
Simple training loop; Boilerplate that could apply to any arbitrary neural network, |
|
""" |
|
|
|
import os |
|
import subprocess |
|
import time |
|
from collections import defaultdict |
|
from copy import deepcopy |
|
from datetime import datetime |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
import torch |
|
import torch.distributed as dist |
|
import torch.nn as nn |
|
from omegaconf import OmegaConf # noqa |
|
from torch.cuda import amp |
|
from torch.nn.parallel import DistributedDataParallel as DDP |
|
from torch.optim import lr_scheduler |
|
from tqdm import tqdm |
|
|
|
import ultralytics.yolo.utils as utils |
|
import ultralytics.yolo.utils.callbacks as callbacks |
|
from ultralytics import __version__ |
|
from ultralytics.yolo.configs import get_config |
|
from ultralytics.yolo.data.utils import check_dataset, check_dataset_yaml |
|
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, RANK, TQDM_BAR_FORMAT, colorstr |
|
from ultralytics.yolo.utils.checks import check_file, print_args |
|
from ultralytics.yolo.utils.dist import ddp_cleanup, generate_ddp_command |
|
from ultralytics.yolo.utils.files import get_latest_run, increment_path, yaml_save |
|
from ultralytics.yolo.utils.torch_utils import ModelEMA, de_parallel, init_seeds, one_cycle, strip_optimizer |
|
|
|
|
|
class BaseTrainer: |
|
""" |
|
BaseTrainer |
|
|
|
A base class for creating trainers. |
|
|
|
Attributes: |
|
args (OmegaConf): Configuration for the trainer. |
|
check_resume (method): Method to check if training should be resumed from a saved checkpoint. |
|
console (logging.Logger): Logger instance. |
|
validator (BaseValidator): Validator instance. |
|
model (nn.Module): Model instance. |
|
callbacks (defaultdict): Dictionary of callbacks. |
|
save_dir (Path): Directory to save results. |
|
wdir (Path): Directory to save weights. |
|
last (Path): Path to last checkpoint. |
|
best (Path): Path to best checkpoint. |
|
batch_size (int): Batch size for training. |
|
epochs (int): Number of epochs to train for. |
|
start_epoch (int): Starting epoch for training. |
|
device (torch.device): Device to use for training. |
|
amp (bool): Flag to enable AMP (Automatic Mixed Precision). |
|
scaler (amp.GradScaler): Gradient scaler for AMP. |
|
data (str): Path to data. |
|
trainset (torch.utils.data.Dataset): Training dataset. |
|
testset (torch.utils.data.Dataset): Testing dataset. |
|
ema (nn.Module): EMA (Exponential Moving Average) of the model. |
|
lf (nn.Module): Loss function. |
|
scheduler (torch.optim.lr_scheduler._LRScheduler): Learning rate scheduler. |
|
best_fitness (float): The best fitness value achieved. |
|
fitness (float): Current fitness value. |
|
loss (float): Current loss value. |
|
tloss (float): Total loss value. |
|
loss_names (list): List of loss names. |
|
csv (Path): Path to results CSV file. |
|
""" |
|
|
|
def __init__(self, config=DEFAULT_CONFIG, overrides=None): |
|
""" |
|
Initializes the BaseTrainer class. |
|
|
|
Args: |
|
config (str, optional): Path to a configuration file. Defaults to DEFAULT_CONFIG. |
|
overrides (dict, optional): Configuration overrides. Defaults to None. |
|
""" |
|
if overrides is None: |
|
overrides = {} |
|
self.args = get_config(config, overrides) |
|
self.check_resume() |
|
init_seeds(self.args.seed + 1 + RANK, deterministic=self.args.deterministic) |
|
|
|
self.console = LOGGER |
|
self.validator = None |
|
self.model = None |
|
self.callbacks = defaultdict(list) |
|
|
|
# dirs |
|
project = self.args.project or f"runs/{self.args.task}" |
|
name = self.args.name or f"{self.args.mode}" |
|
self.save_dir = increment_path(Path(project) / name, exist_ok=self.args.exist_ok if RANK in {-1, 0} else True) |
|
self.wdir = self.save_dir / 'weights' # weights dir |
|
if RANK in {-1, 0}: |
|
self.wdir.mkdir(parents=True, exist_ok=True) # make dir |
|
yaml_save(self.save_dir / 'args.yaml', OmegaConf.to_container(self.args, resolve=True)) # save run args |
|
self.last, self.best = self.wdir / 'last.pt', self.wdir / 'best.pt' # checkpoint paths |
|
|
|
self.batch_size = self.args.batch_size |
|
self.epochs = self.args.epochs |
|
self.start_epoch = 0 |
|
if RANK == -1: |
|
print_args(dict(self.args)) |
|
|
|
# device |
|
self.device = utils.torch_utils.select_device(self.args.device, self.batch_size) |
|
self.amp = self.device.type != 'cpu' |
|
self.scaler = amp.GradScaler(enabled=self.amp) |
|
|
|
# Model and Dataloaders. |
|
self.model = self.args.model |
|
self.data = self.args.data |
|
if self.data.endswith(".yaml"): |
|
self.data = check_dataset_yaml(self.data) |
|
else: |
|
self.data = check_dataset(self.data) |
|
self.trainset, self.testset = self.get_dataset(self.data) |
|
self.ema = None |
|
|
|
# Optimization utils init |
|
self.lf = None |
|
self.scheduler = None |
|
|
|
# epoch level metrics |
|
self.best_fitness = None |
|
self.fitness = None |
|
self.loss = None |
|
self.tloss = None |
|
self.loss_names = None |
|
self.csv = self.save_dir / 'results.csv' |
|
|
|
for callback, func in callbacks.default_callbacks.items(): |
|
self.add_callback(callback, func) |
|
if RANK in {0, -1}: |
|
callbacks.add_integration_callbacks(self) |
|
|
|
def add_callback(self, onevent: str, callback): |
|
""" |
|
appends the given callback |
|
""" |
|
self.callbacks[onevent].append(callback) |
|
|
|
def set_callback(self, onevent: str, callback): |
|
""" |
|
overrides the existing callbacks with the given callback |
|
""" |
|
self.callbacks[onevent] = [callback] |
|
|
|
def trigger_callbacks(self, onevent: str): |
|
for callback in self.callbacks.get(onevent, []): |
|
callback(self) |
|
|
|
def train(self): |
|
world_size = torch.cuda.device_count() |
|
if world_size > 1 and "LOCAL_RANK" not in os.environ: |
|
command = generate_ddp_command(world_size, self) |
|
try: |
|
subprocess.run(command) |
|
except Exception as e: |
|
self.console(e) |
|
finally: |
|
ddp_cleanup(command, self) |
|
else: |
|
self._do_train(int(os.getenv("RANK", -1)), world_size) |
|
|
|
def _setup_ddp(self, rank, world_size): |
|
# os.environ['MASTER_ADDR'] = 'localhost' |
|
# os.environ['MASTER_PORT'] = '9020' |
|
torch.cuda.set_device(rank) |
|
self.device = torch.device('cuda', rank) |
|
self.console.info(f"DDP settings: RANK {rank}, WORLD_SIZE {world_size}, DEVICE {self.device}") |
|
dist.init_process_group("nccl" if dist.is_nccl_available() else "gloo", rank=rank, world_size=world_size) |
|
|
|
def _setup_train(self, rank, world_size): |
|
""" |
|
Builds dataloaders and optimizer on correct rank process |
|
""" |
|
# model |
|
self.trigger_callbacks("on_pretrain_routine_start") |
|
ckpt = self.setup_model() |
|
self.model = self.model.to(self.device) |
|
self.set_model_attributes() |
|
if world_size > 1: |
|
self.model = DDP(self.model, device_ids=[rank]) |
|
# Optimizer |
|
self.accumulate = max(round(self.args.nbs / self.batch_size), 1) # accumulate loss before optimizing |
|
self.args.weight_decay *= self.batch_size * self.accumulate / self.args.nbs # scale weight_decay |
|
self.optimizer = self.build_optimizer(model=self.model, |
|
name=self.args.optimizer, |
|
lr=self.args.lr0, |
|
momentum=self.args.momentum, |
|
decay=self.args.weight_decay) |
|
# Scheduler |
|
if self.args.cos_lr: |
|
self.lf = one_cycle(1, self.args.lrf, self.epochs) # cosine 1->hyp['lrf'] |
|
else: |
|
self.lf = lambda x: (1 - x / self.epochs) * (1.0 - self.args.lrf) + self.args.lrf # linear |
|
self.scheduler = lr_scheduler.LambdaLR(self.optimizer, lr_lambda=self.lf) |
|
self.resume_training(ckpt) |
|
self.scheduler.last_epoch = self.start_epoch - 1 # do not move |
|
|
|
# dataloaders |
|
batch_size = self.batch_size // world_size if world_size > 1 else self.batch_size |
|
self.train_loader = self.get_dataloader(self.trainset, batch_size=batch_size, rank=rank, mode="train") |
|
if rank in {0, -1}: |
|
self.test_loader = self.get_dataloader(self.testset, batch_size=batch_size * 2, rank=-1, mode="val") |
|
self.validator = self.get_validator() |
|
metric_keys = self.validator.metric_keys + self.label_loss_items(prefix="val") |
|
self.metrics = dict(zip(metric_keys, [0] * len(metric_keys))) # TODO: init metrics for plot_results()? |
|
self.ema = ModelEMA(self.model) |
|
self.trigger_callbacks("on_pretrain_routine_end") |
|
|
|
def _do_train(self, rank=-1, world_size=1): |
|
if world_size > 1: |
|
self._setup_ddp(rank, world_size) |
|
|
|
self._setup_train(rank, world_size) |
|
|
|
self.epoch_time = None |
|
self.epoch_time_start = time.time() |
|
self.train_time_start = time.time() |
|
nb = len(self.train_loader) # number of batches |
|
nw = max(round(self.args.warmup_epochs * nb), 100) # number of warmup iterations |
|
last_opt_step = -1 |
|
self.trigger_callbacks("on_train_start") |
|
self.log(f"Image sizes {self.args.imgsz} train, {self.args.imgsz} val\n" |
|
f'Using {self.train_loader.num_workers * (world_size or 1)} dataloader workers\n' |
|
f"Logging results to {colorstr('bold', self.save_dir)}\n" |
|
f"Starting training for {self.epochs} epochs...") |
|
for epoch in range(self.start_epoch, self.epochs): |
|
self.epoch = epoch |
|
self.trigger_callbacks("on_train_epoch_start") |
|
self.model.train() |
|
if rank != -1: |
|
self.train_loader.sampler.set_epoch(epoch) |
|
pbar = enumerate(self.train_loader) |
|
if rank in {-1, 0}: |
|
self.console.info(self.progress_string()) |
|
pbar = tqdm(enumerate(self.train_loader), total=len(self.train_loader), bar_format=TQDM_BAR_FORMAT) |
|
self.tloss = None |
|
self.optimizer.zero_grad() |
|
for i, batch in pbar: |
|
self.trigger_callbacks("on_train_batch_start") |
|
|
|
# update dataloader attributes (optional) |
|
if epoch == (self.epochs - self.args.close_mosaic) and hasattr(self.train_loader.dataset, 'mosaic'): |
|
LOGGER.info("Closing dataloader mosaic") |
|
self.train_loader.dataset.mosaic = False |
|
|
|
# warmup |
|
ni = i + nb * epoch |
|
if ni <= nw: |
|
xi = [0, nw] # x interp |
|
self.accumulate = max(1, np.interp(ni, xi, [1, self.args.nbs / self.batch_size]).round()) |
|
for j, x in enumerate(self.optimizer.param_groups): |
|
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 |
|
x['lr'] = np.interp( |
|
ni, xi, [self.args.warmup_bias_lr if j == 0 else 0.0, x['initial_lr'] * self.lf(epoch)]) |
|
if 'momentum' in x: |
|
x['momentum'] = np.interp(ni, xi, [self.args.warmup_momentum, self.args.momentum]) |
|
|
|
# forward |
|
with torch.cuda.amp.autocast(self.amp): |
|
batch = self.preprocess_batch(batch) |
|
preds = self.model(batch["img"]) |
|
self.loss, self.loss_items = self.criterion(preds, batch) |
|
if rank != -1: |
|
self.loss *= world_size |
|
self.tloss = (self.tloss * i + self.loss_items) / (i + 1) if self.tloss is not None \ |
|
else self.loss_items |
|
|
|
# backward |
|
self.scaler.scale(self.loss).backward() |
|
|
|
# optimize - https://pytorch.org/docs/master/notes/amp_examples.html |
|
if ni - last_opt_step >= self.accumulate: |
|
self.optimizer_step() |
|
last_opt_step = ni |
|
|
|
# log |
|
mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB) |
|
loss_len = self.tloss.shape[0] if len(self.tloss.size()) else 1 |
|
losses = self.tloss if loss_len > 1 else torch.unsqueeze(self.tloss, 0) |
|
if rank in {-1, 0}: |
|
pbar.set_description( |
|
('%11s' * 2 + '%11.4g' * (2 + loss_len)) % |
|
(f'{epoch + 1}/{self.epochs}', mem, *losses, batch["cls"].shape[0], batch["img"].shape[-1])) |
|
self.trigger_callbacks('on_batch_end') |
|
if self.args.plots and ni < 3: |
|
self.plot_training_samples(batch, ni) |
|
|
|
self.trigger_callbacks("on_train_batch_end") |
|
|
|
lr = {f"lr{ir}": x['lr'] for ir, x in enumerate(self.optimizer.param_groups)} # for loggers |
|
self.scheduler.step() |
|
self.trigger_callbacks("on_train_epoch_end") |
|
|
|
if rank in {-1, 0}: |
|
# validation |
|
self.trigger_callbacks('on_val_start') |
|
self.ema.update_attr(self.model, include=['yaml', 'nc', 'args', 'names', 'stride', 'class_weights']) |
|
final_epoch = (epoch + 1 == self.epochs) |
|
if not self.args.noval or final_epoch: |
|
self.metrics, self.fitness = self.validate() |
|
self.trigger_callbacks('on_val_end') |
|
self.save_metrics(metrics={**self.label_loss_items(self.tloss), **self.metrics, **lr}) |
|
|
|
# save model |
|
if (not self.args.nosave) or (epoch + 1 == self.epochs): |
|
self.save_model() |
|
self.trigger_callbacks('on_model_save') |
|
|
|
tnow = time.time() |
|
self.epoch_time = tnow - self.epoch_time_start |
|
self.epoch_time_start = tnow |
|
|
|
# TODO: termination condition |
|
|
|
if rank in {-1, 0}: |
|
# do the last evaluation with best.pt |
|
self.log(f'\n{epoch - self.start_epoch + 1} epochs completed in ' |
|
f'{(time.time() - self.train_time_start) / 3600:.3f} hours.') |
|
self.final_eval() |
|
if self.args.plots: |
|
self.plot_metrics() |
|
self.log(f"Results saved to {colorstr('bold', self.save_dir)}") |
|
self.trigger_callbacks('on_train_end') |
|
torch.cuda.empty_cache() |
|
self.trigger_callbacks('teardown') |
|
|
|
def save_model(self): |
|
ckpt = { |
|
'epoch': self.epoch, |
|
'best_fitness': self.best_fitness, |
|
'model': deepcopy(de_parallel(self.model)).half(), |
|
'ema': deepcopy(self.ema.ema).half(), |
|
'updates': self.ema.updates, |
|
'optimizer': self.optimizer.state_dict(), |
|
'train_args': self.args, |
|
'date': datetime.now().isoformat(), |
|
'version': __version__} |
|
|
|
# Save last, best and delete |
|
torch.save(ckpt, self.last) |
|
if self.best_fitness == self.fitness: |
|
torch.save(ckpt, self.best) |
|
del ckpt |
|
|
|
def get_dataset(self, data): |
|
""" |
|
Get train, val path from data dict if it exists. Returns None if data format is not recognized |
|
""" |
|
return data["train"], data.get("val") or data.get("test") |
|
|
|
def setup_model(self): |
|
""" |
|
load/create/download model for any task |
|
""" |
|
if isinstance(self.model, torch.nn.Module): # if loaded model is passed |
|
return |
|
# We should improve the code flow here. This function looks hacky |
|
model = self.model |
|
pretrained = not (str(model).endswith(".yaml")) |
|
# config |
|
if not pretrained: |
|
model = check_file(model) |
|
ckpt = self.load_ckpt(model) if pretrained else None |
|
self.model = self.load_model(model_cfg=None if pretrained else model, weights=ckpt) # model |
|
return ckpt |
|
|
|
def load_ckpt(self, ckpt): |
|
return torch.load(ckpt, map_location='cpu') |
|
|
|
def optimizer_step(self): |
|
self.scaler.unscale_(self.optimizer) # unscale gradients |
|
torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=10.0) # clip gradients |
|
self.scaler.step(self.optimizer) |
|
self.scaler.update() |
|
self.optimizer.zero_grad() |
|
if self.ema: |
|
self.ema.update(self.model) |
|
|
|
def preprocess_batch(self, batch): |
|
""" |
|
Allows custom preprocessing model inputs and ground truths depending on task type |
|
""" |
|
return batch |
|
|
|
def validate(self): |
|
""" |
|
Runs validation on test set using self.validator. |
|
# TODO: discuss validator class. Enforce that a validator metrics dict should contain |
|
"fitness" metric. |
|
""" |
|
metrics = self.validator(self) |
|
fitness = metrics.pop("fitness", -self.loss.detach().cpu().numpy()) # use loss as fitness measure if not found |
|
if not self.best_fitness or self.best_fitness < fitness: |
|
self.best_fitness = fitness |
|
return metrics, fitness |
|
|
|
def log(self, text, rank=-1): |
|
""" |
|
Logs the given text to given ranks process if provided, otherwise logs to all ranks |
|
:param text: text to log |
|
:param rank: List[Int] |
|
|
|
""" |
|
if rank in {-1, 0}: |
|
self.console.info(text) |
|
|
|
def load_model(self, model_cfg=None, weights=None, verbose=True): |
|
raise NotImplementedError("This task trainer doesn't support loading cfg files") |
|
|
|
def get_validator(self): |
|
raise NotImplementedError("get_validator function not implemented in trainer") |
|
|
|
def get_dataloader(self, dataset_path, batch_size=16, rank=0): |
|
""" |
|
Returns dataloader derived from torch.data.Dataloader |
|
""" |
|
raise NotImplementedError("get_dataloader function not implemented in trainer") |
|
|
|
def criterion(self, preds, batch): |
|
""" |
|
Returns loss and individual loss items as Tensor |
|
""" |
|
raise NotImplementedError("criterion function not implemented in trainer") |
|
|
|
def label_loss_items(self, loss_items=None, prefix="train"): |
|
""" |
|
Returns a loss dict with labelled training loss items tensor |
|
""" |
|
# Not needed for classification but necessary for segmentation & detection |
|
return {"loss": loss_items} if loss_items is not None else ["loss"] |
|
|
|
def set_model_attributes(self): |
|
""" |
|
To set or update model parameters before training. |
|
""" |
|
self.model.names = self.data["names"] |
|
|
|
def build_targets(self, preds, targets): |
|
pass |
|
|
|
def progress_string(self): |
|
return "" |
|
|
|
# TODO: may need to put these following functions into callback |
|
def plot_training_samples(self, batch, ni): |
|
pass |
|
|
|
def save_metrics(self, metrics): |
|
keys, vals = list(metrics.keys()), list(metrics.values()) |
|
n = len(metrics) + 1 # number of cols |
|
s = '' if self.csv.exists() else (('%23s,' * n % tuple(['epoch'] + keys)).rstrip(',') + '\n') # header |
|
with open(self.csv, 'a') as f: |
|
f.write(s + ('%23.5g,' * n % tuple([self.epoch] + vals)).rstrip(',') + '\n') |
|
|
|
def plot_metrics(self): |
|
pass |
|
|
|
def final_eval(self): |
|
for f in self.last, self.best: |
|
if f.exists(): |
|
strip_optimizer(f) # strip optimizers |
|
if f is self.best: |
|
self.console.info(f'\nValidating {f}...') |
|
self.validator.args.save_json = True |
|
self.metrics = self.validator(model=f) |
|
self.metrics.pop('fitness', None) |
|
self.trigger_callbacks('on_val_end') |
|
|
|
def check_resume(self): |
|
resume = self.args.resume |
|
if resume: |
|
last = Path(check_file(resume) if isinstance(resume, str) else get_latest_run()) |
|
args_yaml = last.parent.parent / 'args.yaml' # train options yaml |
|
if args_yaml.is_file(): |
|
args = get_config(args_yaml) # replace |
|
args.model, args.resume, args.exist_ok = str(last), True, True # reinstate |
|
self.args = args |
|
|
|
def resume_training(self, ckpt): |
|
if ckpt is None: |
|
return |
|
best_fitness = 0.0 |
|
start_epoch = ckpt['epoch'] + 1 |
|
if ckpt['optimizer'] is not None: |
|
self.optimizer.load_state_dict(ckpt['optimizer']) # optimizer |
|
best_fitness = ckpt['best_fitness'] |
|
if self.ema and ckpt.get('ema'): |
|
self.ema.ema.load_state_dict(ckpt['ema'].float().state_dict()) # EMA |
|
self.ema.updates = ckpt['updates'] |
|
if self.args.resume: |
|
assert start_epoch > 0, \ |
|
f'{self.args.model} training to {self.epochs} epochs is finished, nothing to resume.\n' \ |
|
f"Start a new training without --resume, i.e. 'yolo task=... mode=train model={self.args.model}'" |
|
LOGGER.info( |
|
f'Resuming training from {self.args.model} from epoch {start_epoch} to {self.epochs} total epochs') |
|
if self.epochs < start_epoch: |
|
LOGGER.info( |
|
f"{self.model} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {self.epochs} more epochs.") |
|
self.epochs += ckpt['epoch'] # finetune additional epochs |
|
self.best_fitness = best_fitness |
|
self.start_epoch = start_epoch |
|
|
|
@staticmethod |
|
def build_optimizer(model, name='Adam', lr=0.001, momentum=0.9, decay=1e-5): |
|
""" |
|
Builds an optimizer with the specified parameters and parameter groups. |
|
|
|
Args: |
|
model (nn.Module): model to optimize |
|
name (str): name of the optimizer to use |
|
lr (float): learning rate |
|
momentum (float): momentum |
|
decay (float): weight decay |
|
|
|
Returns: |
|
torch.optim.Optimizer: the built optimizer |
|
""" |
|
g = [], [], [] # optimizer parameter groups |
|
bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k) # normalization layers, i.e. BatchNorm2d() |
|
for v in model.modules(): |
|
if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # bias (no decay) |
|
g[2].append(v.bias) |
|
if isinstance(v, bn): # weight (no decay) |
|
g[1].append(v.weight) |
|
elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): # weight (with decay) |
|
g[0].append(v.weight) |
|
|
|
if name == 'Adam': |
|
optimizer = torch.optim.Adam(g[2], lr=lr, betas=(momentum, 0.999)) # adjust beta1 to momentum |
|
elif name == 'AdamW': |
|
optimizer = torch.optim.AdamW(g[2], lr=lr, betas=(momentum, 0.999), weight_decay=0.0) |
|
elif name == 'RMSProp': |
|
optimizer = torch.optim.RMSprop(g[2], lr=lr, momentum=momentum) |
|
elif name == 'SGD': |
|
optimizer = torch.optim.SGD(g[2], lr=lr, momentum=momentum, nesterov=True) |
|
else: |
|
raise NotImplementedError(f'Optimizer {name} not implemented.') |
|
|
|
optimizer.add_param_group({'params': g[0], 'weight_decay': decay}) # add g0 with weight_decay |
|
optimizer.add_param_group({'params': g[1], 'weight_decay': 0.0}) # add g1 (BatchNorm2d weights) |
|
LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__}(lr={lr}) with parameter groups " |
|
f"{len(g[1])} weight(decay=0.0), {len(g[0])} weight(decay={decay}), {len(g[2])} bias") |
|
return optimizer
|
|
|