You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

275 lines
12 KiB

import contextlib
import hashlib
import os
import subprocess
import time
from pathlib import Path
from tarfile import is_tarfile
from zipfile import is_zipfile
import cv2
import numpy as np
import torch
from PIL import ExifTags, Image, ImageOps
from ultralytics.yolo.utils import LOGGER, ROOT, colorstr
from ultralytics.yolo.utils.checks import check_file, check_font, is_ascii
from ultralytics.yolo.utils.downloads import download
from ultralytics.yolo.utils.files import unzip_file, yaml_load
from ..utils.ops import segments2boxes
HELP_URL = "See https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data"
IMG_FORMATS = "bmp", "dng", "jpeg", "jpg", "mpo", "png", "tif", "tiff", "webp", "pfm" # include image suffixes
VID_FORMATS = "asf", "avi", "gif", "m4v", "mkv", "mov", "mp4", "mpeg", "mpg", "ts", "wmv" # include video suffixes
LOCAL_RANK = int(os.getenv("LOCAL_RANK", -1)) # https://pytorch.org/docs/stable/elastic/run.html
RANK = int(os.getenv('RANK', -1))
PIN_MEMORY = str(os.getenv("PIN_MEMORY", True)).lower() == "true" # global pin_memory for dataloaders
IMAGENET_MEAN = 0.485, 0.456, 0.406 # RGB mean
IMAGENET_STD = 0.229, 0.224, 0.225 # RGB standard deviation
# Get orientation exif tag
for orientation in ExifTags.TAGS.keys():
if ExifTags.TAGS[orientation] == "Orientation":
break
def img2label_paths(img_paths):
# Define label paths as a function of image paths
sa, sb = f"{os.sep}images{os.sep}", f"{os.sep}labels{os.sep}" # /images/, /labels/ substrings
return [sb.join(x.rsplit(sa, 1)).rsplit(".", 1)[0] + ".txt" for x in img_paths]
def get_hash(paths):
# Returns a single hash value of a list of paths (files or dirs)
size = sum(os.path.getsize(p) for p in paths if os.path.exists(p)) # sizes
h = hashlib.md5(str(size).encode()) # hash sizes
h.update("".join(paths).encode()) # hash paths
return h.hexdigest() # return hash
def exif_size(img):
# Returns exif-corrected PIL size
s = img.size # (width, height)
with contextlib.suppress(Exception):
rotation = dict(img._getexif().items())[orientation]
if rotation in [6, 8]: # rotation 270 or 90
s = (s[1], s[0])
return s
def verify_image_label(args):
# Verify one image-label pair
im_file, lb_file, prefix, keypoint = args
# number (missing, found, empty, corrupt), message, segments, keypoints
nm, nf, ne, nc, msg, segments, keypoints = 0, 0, 0, 0, "", [], None
try:
# verify images
im = Image.open(im_file)
im.verify() # PIL verify
shape = exif_size(im) # image size
shape = (shape[1], shape[0]) # hw
assert (shape[0] > 9) & (shape[1] > 9), f"image size {shape} <10 pixels"
assert im.format.lower() in IMG_FORMATS, f"invalid image format {im.format}"
if im.format.lower() in ("jpg", "jpeg"):
with open(im_file, "rb") as f:
f.seek(-2, 2)
if f.read() != b"\xff\xd9": # corrupt JPEG
ImageOps.exif_transpose(Image.open(im_file)).save(im_file, "JPEG", subsampling=0, quality=100)
msg = f"{prefix}WARNING ⚠ {im_file}: corrupt JPEG restored and saved"
# verify labels
if os.path.isfile(lb_file):
nf = 1 # label found
with open(lb_file) as f:
lb = [x.split() for x in f.read().strip().splitlines() if len(x)]
if any(len(x) > 6 for x in lb) and (not keypoint): # is segment
classes = np.array([x[0] for x in lb], dtype=np.float32)
segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb] # (cls, xy1...)
lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh)
lb = np.array(lb, dtype=np.float32)
nl = len(lb)
if nl:
if keypoint:
assert lb.shape[1] == 56, "labels require 56 columns each"
assert (lb[:, 5::3] <= 1).all(), "non-normalized or out of bounds coordinate labels"
assert (lb[:, 6::3] <= 1).all(), "non-normalized or out of bounds coordinate labels"
kpts = np.zeros((lb.shape[0], 39))
for i in range(len(lb)):
kpt = np.delete(lb[i, 5:], np.arange(2, lb.shape[1] - 5,
3)) # remove the occlusion parameter from the GT
kpts[i] = np.hstack((lb[i, :5], kpt))
lb = kpts
assert lb.shape[1] == 39, "labels require 39 columns each after removing occlusion parameter"
else:
assert lb.shape[1] == 5, f"labels require 5 columns, {lb.shape[1]} columns detected"
assert (lb >= 0).all(), f"negative label values {lb[lb < 0]}"
assert (lb[:, 1:] <=
1).all(), f"non-normalized or out of bounds coordinates {lb[:, 1:][lb[:, 1:] > 1]}"
_, i = np.unique(lb, axis=0, return_index=True)
if len(i) < nl: # duplicate row check
lb = lb[i] # remove duplicates
if segments:
segments = [segments[x] for x in i]
msg = f"{prefix}WARNING ⚠ {im_file}: {nl - len(i)} duplicate labels removed"
else:
ne = 1 # label empty
lb = np.zeros((0, 39), dtype=np.float32) if keypoint else np.zeros((0, 5), dtype=np.float32)
else:
nm = 1 # label missing
lb = np.zeros((0, 39), dtype=np.float32) if keypoint else np.zeros((0, 5), dtype=np.float32)
if keypoint:
keypoints = lb[:, 5:].reshape(-1, 17, 2)
lb = lb[:, :5]
return im_file, lb, shape, segments, keypoints, nm, nf, ne, nc, msg
except Exception as e:
nc = 1
msg = f"{prefix}WARNING ⚠ {im_file}: ignoring corrupt image/label: {e}"
return [None, None, None, None, None, nm, nf, ne, nc, msg]
def polygon2mask(imgsz, polygons, color=1, downsample_ratio=1):
"""
Args:
imgsz (tuple): The image size.
polygons (np.ndarray): [N, M], N is the number of polygons, M is the number of points(Be divided by 2).
color (int): color
downsample_ratio (int): downsample ratio
"""
mask = np.zeros(imgsz, dtype=np.uint8)
polygons = np.asarray(polygons)
polygons = polygons.astype(np.int32)
shape = polygons.shape
polygons = polygons.reshape(shape[0], -1, 2)
cv2.fillPoly(mask, polygons, color=color)
nh, nw = (imgsz[0] // downsample_ratio, imgsz[1] // downsample_ratio)
# NOTE: fillPoly firstly then resize is trying the keep the same way
# of loss calculation when mask-ratio=1.
mask = cv2.resize(mask, (nw, nh))
return mask
def polygons2masks(imgsz, polygons, color, downsample_ratio=1):
"""
Args:
imgsz (tuple): The image size.
polygons (list[np.ndarray]): each polygon is [N, M], N is number of polygons, M is number of points (M % 2 = 0)
color (int): color
downsample_ratio (int): downsample ratio
"""
masks = []
for si in range(len(polygons)):
mask = polygon2mask(imgsz, [polygons[si].reshape(-1)], color, downsample_ratio)
masks.append(mask)
return np.array(masks)
def polygons2masks_overlap(imgsz, segments, downsample_ratio=1):
"""Return a (640, 640) overlap mask."""
masks = np.zeros((imgsz[0] // downsample_ratio, imgsz[1] // downsample_ratio),
dtype=np.int32 if len(segments) > 255 else np.uint8)
areas = []
ms = []
for si in range(len(segments)):
mask = polygon2mask(
imgsz,
[segments[si].reshape(-1)],
downsample_ratio=downsample_ratio,
color=1,
)
ms.append(mask)
areas.append(mask.sum())
areas = np.asarray(areas)
index = np.argsort(-areas)
ms = np.array(ms)[index]
for i in range(len(segments)):
mask = ms[i] * (i + 1)
masks = masks + mask
masks = np.clip(masks, a_min=0, a_max=i + 1)
return masks, index
def check_dataset_yaml(data, autodownload=True):
# Download, check and/or unzip dataset if not found locally
data = check_file(data)
DATASETS_DIR = (Path.cwd() / "../datasets").resolve() # TODO: handle global dataset dir
# Download (optional)
extract_dir = ''
if isinstance(data, (str, Path)) and (is_zipfile(data) or is_tarfile(data)):
download(data, dir=f'{DATASETS_DIR}/{Path(data).stem}', unzip=True, delete=False, curl=False, threads=1)
data = next((DATASETS_DIR / Path(data).stem).rglob('*.yaml'))
extract_dir, autodownload = data.parent, False
# Read yaml (optional)
if isinstance(data, (str, Path)):
data = yaml_load(data) # dictionary
# Checks
for k in 'train', 'val', 'names':
assert k in data, f"data.yaml '{k}:' field missing ❌"
if isinstance(data['names'], (list, tuple)): # old array format
data['names'] = dict(enumerate(data['names'])) # convert to dict
data['nc'] = len(data['names'])
# Resolve paths
path = Path(extract_dir or data.get('path') or '') # optional 'path' default to '.'
if not path.is_absolute():
path = (Path.cwd() / path).resolve()
data['path'] = path # download scripts
for k in 'train', 'val', 'test':
if data.get(k): # prepend path
if isinstance(data[k], str):
x = (path / data[k]).resolve()
if not x.exists() and data[k].startswith('../'):
x = (path / data[k][3:]).resolve()
data[k] = str(x)
else:
data[k] = [str((path / x).resolve()) for x in data[k]]
# Parse yaml
train, val, test, s = (data.get(x) for x in ('train', 'val', 'test', 'download'))
if val:
val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
if not all(x.exists() for x in val):
LOGGER.info('\nDataset not found ⚠, missing paths %s' % [str(x) for x in val if not x.exists()])
if not s or not autodownload:
raise FileNotFoundError('Dataset not found ❌')
t = time.time()
if s.startswith('http') and s.endswith('.zip'): # URL
f = Path(s).name # filename
LOGGER.info(f'Downloading {s} to {f}...')
torch.hub.download_url_to_file(s, f)
Path(DATASETS_DIR).mkdir(parents=True, exist_ok=True) # create root
unzip_file(f, path=DATASETS_DIR) # unzip
Path(f).unlink() # remove zip
r = None # success
elif s.startswith('bash '): # bash script
LOGGER.info(f'Running {s} ...')
r = os.system(s)
else: # python script
r = exec(s, {'yaml': data}) # return None
dt = f'({round(time.time() - t, 1)}s)'
s = f"success ✅ {dt}, saved to {colorstr('bold', DATASETS_DIR)}" if r in (0, None) else f"failure {dt}"
LOGGER.info(f"Dataset download {s}")
check_font('Arial.ttf' if is_ascii(data['names']) else 'Arial.Unicode.ttf', progress=True) # download fonts
return data # dictionary
def check_dataset(dataset: str):
data = Path.cwd() / "datasets" / dataset
data_dir = data if data.is_dir() else (Path.cwd() / data)
if not data_dir.is_dir():
LOGGER.info(f'\nDataset not found ⚠, missing path {data_dir}, attempting download...')
t = time.time()
if str(data) == 'imagenet':
subprocess.run(f"bash {ROOT / 'data/scripts/get_imagenet.sh'}", shell=True, check=True)
else:
url = f'https://github.com/ultralytics/yolov5/releases/download/v1.0/{dataset}.zip'
download(url, dir=data_dir.parent)
s = f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {colorstr('bold', data_dir)}\n"
LOGGER.info(s)
train_set = data_dir / "train"
test_set = data_dir / 'test' if (data_dir / 'test').exists() else data_dir / 'val' # data/test or data/val
nc = len([x for x in (data_dir / 'train').glob('*') if x.is_dir()]) # number of classes
names = [name for name in os.listdir(data_dir / 'train') if os.path.isdir(data_dir / 'train' / name)]
data = {"train": train_set, "val": test_set, "nc": nc, "names": names}
return data