|
|
import contextlib |
|
|
import hashlib |
|
|
import os |
|
|
import subprocess |
|
|
import time |
|
|
from pathlib import Path |
|
|
from tarfile import is_tarfile |
|
|
from zipfile import is_zipfile |
|
|
|
|
|
import cv2 |
|
|
import numpy as np |
|
|
import torch |
|
|
from PIL import ExifTags, Image, ImageOps |
|
|
|
|
|
from ultralytics.yolo.utils import LOGGER, ROOT, colorstr |
|
|
from ultralytics.yolo.utils.checks import check_file, check_font, is_ascii |
|
|
from ultralytics.yolo.utils.downloads import download |
|
|
from ultralytics.yolo.utils.files import unzip_file, yaml_load |
|
|
|
|
|
from ..utils.ops import segments2boxes |
|
|
|
|
|
HELP_URL = "See https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data" |
|
|
IMG_FORMATS = "bmp", "dng", "jpeg", "jpg", "mpo", "png", "tif", "tiff", "webp", "pfm" # include image suffixes |
|
|
VID_FORMATS = "asf", "avi", "gif", "m4v", "mkv", "mov", "mp4", "mpeg", "mpg", "ts", "wmv" # include video suffixes |
|
|
LOCAL_RANK = int(os.getenv("LOCAL_RANK", -1)) # https://pytorch.org/docs/stable/elastic/run.html |
|
|
RANK = int(os.getenv('RANK', -1)) |
|
|
PIN_MEMORY = str(os.getenv("PIN_MEMORY", True)).lower() == "true" # global pin_memory for dataloaders |
|
|
IMAGENET_MEAN = 0.485, 0.456, 0.406 # RGB mean |
|
|
IMAGENET_STD = 0.229, 0.224, 0.225 # RGB standard deviation |
|
|
|
|
|
# Get orientation exif tag |
|
|
for orientation in ExifTags.TAGS.keys(): |
|
|
if ExifTags.TAGS[orientation] == "Orientation": |
|
|
break |
|
|
|
|
|
|
|
|
def img2label_paths(img_paths): |
|
|
# Define label paths as a function of image paths |
|
|
sa, sb = f"{os.sep}images{os.sep}", f"{os.sep}labels{os.sep}" # /images/, /labels/ substrings |
|
|
return [sb.join(x.rsplit(sa, 1)).rsplit(".", 1)[0] + ".txt" for x in img_paths] |
|
|
|
|
|
|
|
|
def get_hash(paths): |
|
|
# Returns a single hash value of a list of paths (files or dirs) |
|
|
size = sum(os.path.getsize(p) for p in paths if os.path.exists(p)) # sizes |
|
|
h = hashlib.md5(str(size).encode()) # hash sizes |
|
|
h.update("".join(paths).encode()) # hash paths |
|
|
return h.hexdigest() # return hash |
|
|
|
|
|
|
|
|
def exif_size(img): |
|
|
# Returns exif-corrected PIL size |
|
|
s = img.size # (width, height) |
|
|
with contextlib.suppress(Exception): |
|
|
rotation = dict(img._getexif().items())[orientation] |
|
|
if rotation in [6, 8]: # rotation 270 or 90 |
|
|
s = (s[1], s[0]) |
|
|
return s |
|
|
|
|
|
|
|
|
def verify_image_label(args): |
|
|
# Verify one image-label pair |
|
|
im_file, lb_file, prefix, keypoint = args |
|
|
# number (missing, found, empty, corrupt), message, segments, keypoints |
|
|
nm, nf, ne, nc, msg, segments, keypoints = 0, 0, 0, 0, "", [], None |
|
|
try: |
|
|
# verify images |
|
|
im = Image.open(im_file) |
|
|
im.verify() # PIL verify |
|
|
shape = exif_size(im) # image size |
|
|
shape = (shape[1], shape[0]) # hw |
|
|
assert (shape[0] > 9) & (shape[1] > 9), f"image size {shape} <10 pixels" |
|
|
assert im.format.lower() in IMG_FORMATS, f"invalid image format {im.format}" |
|
|
if im.format.lower() in ("jpg", "jpeg"): |
|
|
with open(im_file, "rb") as f: |
|
|
f.seek(-2, 2) |
|
|
if f.read() != b"\xff\xd9": # corrupt JPEG |
|
|
ImageOps.exif_transpose(Image.open(im_file)).save(im_file, "JPEG", subsampling=0, quality=100) |
|
|
msg = f"{prefix}WARNING ⚠️ {im_file}: corrupt JPEG restored and saved" |
|
|
|
|
|
# verify labels |
|
|
if os.path.isfile(lb_file): |
|
|
nf = 1 # label found |
|
|
with open(lb_file) as f: |
|
|
lb = [x.split() for x in f.read().strip().splitlines() if len(x)] |
|
|
if any(len(x) > 6 for x in lb) and (not keypoint): # is segment |
|
|
classes = np.array([x[0] for x in lb], dtype=np.float32) |
|
|
segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb] # (cls, xy1...) |
|
|
lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh) |
|
|
lb = np.array(lb, dtype=np.float32) |
|
|
nl = len(lb) |
|
|
if nl: |
|
|
if keypoint: |
|
|
assert lb.shape[1] == 56, "labels require 56 columns each" |
|
|
assert (lb[:, 5::3] <= 1).all(), "non-normalized or out of bounds coordinate labels" |
|
|
assert (lb[:, 6::3] <= 1).all(), "non-normalized or out of bounds coordinate labels" |
|
|
kpts = np.zeros((lb.shape[0], 39)) |
|
|
for i in range(len(lb)): |
|
|
kpt = np.delete(lb[i, 5:], np.arange(2, lb.shape[1] - 5, |
|
|
3)) # remove the occlusion parameter from the GT |
|
|
kpts[i] = np.hstack((lb[i, :5], kpt)) |
|
|
lb = kpts |
|
|
assert lb.shape[1] == 39, "labels require 39 columns each after removing occlusion parameter" |
|
|
else: |
|
|
assert lb.shape[1] == 5, f"labels require 5 columns, {lb.shape[1]} columns detected" |
|
|
assert (lb >= 0).all(), f"negative label values {lb[lb < 0]}" |
|
|
assert (lb[:, 1:] <= |
|
|
1).all(), f"non-normalized or out of bounds coordinates {lb[:, 1:][lb[:, 1:] > 1]}" |
|
|
_, i = np.unique(lb, axis=0, return_index=True) |
|
|
if len(i) < nl: # duplicate row check |
|
|
lb = lb[i] # remove duplicates |
|
|
if segments: |
|
|
segments = [segments[x] for x in i] |
|
|
msg = f"{prefix}WARNING ⚠️ {im_file}: {nl - len(i)} duplicate labels removed" |
|
|
else: |
|
|
ne = 1 # label empty |
|
|
lb = np.zeros((0, 39), dtype=np.float32) if keypoint else np.zeros((0, 5), dtype=np.float32) |
|
|
else: |
|
|
nm = 1 # label missing |
|
|
lb = np.zeros((0, 39), dtype=np.float32) if keypoint else np.zeros((0, 5), dtype=np.float32) |
|
|
if keypoint: |
|
|
keypoints = lb[:, 5:].reshape(-1, 17, 2) |
|
|
lb = lb[:, :5] |
|
|
return im_file, lb, shape, segments, keypoints, nm, nf, ne, nc, msg |
|
|
except Exception as e: |
|
|
nc = 1 |
|
|
msg = f"{prefix}WARNING ⚠️ {im_file}: ignoring corrupt image/label: {e}" |
|
|
return [None, None, None, None, None, nm, nf, ne, nc, msg] |
|
|
|
|
|
|
|
|
def polygon2mask(imgsz, polygons, color=1, downsample_ratio=1): |
|
|
""" |
|
|
Args: |
|
|
imgsz (tuple): The image size. |
|
|
polygons (np.ndarray): [N, M], N is the number of polygons, M is the number of points(Be divided by 2). |
|
|
color (int): color |
|
|
downsample_ratio (int): downsample ratio |
|
|
""" |
|
|
mask = np.zeros(imgsz, dtype=np.uint8) |
|
|
polygons = np.asarray(polygons) |
|
|
polygons = polygons.astype(np.int32) |
|
|
shape = polygons.shape |
|
|
polygons = polygons.reshape(shape[0], -1, 2) |
|
|
cv2.fillPoly(mask, polygons, color=color) |
|
|
nh, nw = (imgsz[0] // downsample_ratio, imgsz[1] // downsample_ratio) |
|
|
# NOTE: fillPoly firstly then resize is trying the keep the same way |
|
|
# of loss calculation when mask-ratio=1. |
|
|
mask = cv2.resize(mask, (nw, nh)) |
|
|
return mask |
|
|
|
|
|
|
|
|
def polygons2masks(imgsz, polygons, color, downsample_ratio=1): |
|
|
""" |
|
|
Args: |
|
|
imgsz (tuple): The image size. |
|
|
polygons (list[np.ndarray]): each polygon is [N, M], N is number of polygons, M is number of points (M % 2 = 0) |
|
|
color (int): color |
|
|
downsample_ratio (int): downsample ratio |
|
|
""" |
|
|
masks = [] |
|
|
for si in range(len(polygons)): |
|
|
mask = polygon2mask(imgsz, [polygons[si].reshape(-1)], color, downsample_ratio) |
|
|
masks.append(mask) |
|
|
return np.array(masks) |
|
|
|
|
|
|
|
|
def polygons2masks_overlap(imgsz, segments, downsample_ratio=1): |
|
|
"""Return a (640, 640) overlap mask.""" |
|
|
masks = np.zeros((imgsz[0] // downsample_ratio, imgsz[1] // downsample_ratio), |
|
|
dtype=np.int32 if len(segments) > 255 else np.uint8) |
|
|
areas = [] |
|
|
ms = [] |
|
|
for si in range(len(segments)): |
|
|
mask = polygon2mask( |
|
|
imgsz, |
|
|
[segments[si].reshape(-1)], |
|
|
downsample_ratio=downsample_ratio, |
|
|
color=1, |
|
|
) |
|
|
ms.append(mask) |
|
|
areas.append(mask.sum()) |
|
|
areas = np.asarray(areas) |
|
|
index = np.argsort(-areas) |
|
|
ms = np.array(ms)[index] |
|
|
for i in range(len(segments)): |
|
|
mask = ms[i] * (i + 1) |
|
|
masks = masks + mask |
|
|
masks = np.clip(masks, a_min=0, a_max=i + 1) |
|
|
return masks, index |
|
|
|
|
|
|
|
|
def check_dataset_yaml(data, autodownload=True): |
|
|
# Download, check and/or unzip dataset if not found locally |
|
|
data = check_file(data) |
|
|
DATASETS_DIR = (Path.cwd() / "../datasets").resolve() # TODO: handle global dataset dir |
|
|
# Download (optional) |
|
|
extract_dir = '' |
|
|
if isinstance(data, (str, Path)) and (is_zipfile(data) or is_tarfile(data)): |
|
|
download(data, dir=f'{DATASETS_DIR}/{Path(data).stem}', unzip=True, delete=False, curl=False, threads=1) |
|
|
data = next((DATASETS_DIR / Path(data).stem).rglob('*.yaml')) |
|
|
extract_dir, autodownload = data.parent, False |
|
|
# Read yaml (optional) |
|
|
if isinstance(data, (str, Path)): |
|
|
data = yaml_load(data) # dictionary |
|
|
|
|
|
# Checks |
|
|
for k in 'train', 'val', 'names': |
|
|
assert k in data, f"data.yaml '{k}:' field missing ❌" |
|
|
if isinstance(data['names'], (list, tuple)): # old array format |
|
|
data['names'] = dict(enumerate(data['names'])) # convert to dict |
|
|
data['nc'] = len(data['names']) |
|
|
|
|
|
# Resolve paths |
|
|
path = Path(extract_dir or data.get('path') or '') # optional 'path' default to '.' |
|
|
if not path.is_absolute(): |
|
|
path = (Path.cwd() / path).resolve() |
|
|
data['path'] = path # download scripts |
|
|
for k in 'train', 'val', 'test': |
|
|
if data.get(k): # prepend path |
|
|
if isinstance(data[k], str): |
|
|
x = (path / data[k]).resolve() |
|
|
if not x.exists() and data[k].startswith('../'): |
|
|
x = (path / data[k][3:]).resolve() |
|
|
data[k] = str(x) |
|
|
else: |
|
|
data[k] = [str((path / x).resolve()) for x in data[k]] |
|
|
|
|
|
# Parse yaml |
|
|
train, val, test, s = (data.get(x) for x in ('train', 'val', 'test', 'download')) |
|
|
if val: |
|
|
val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path |
|
|
if not all(x.exists() for x in val): |
|
|
LOGGER.info('\nDataset not found ⚠️, missing paths %s' % [str(x) for x in val if not x.exists()]) |
|
|
if not s or not autodownload: |
|
|
raise FileNotFoundError('Dataset not found ❌') |
|
|
t = time.time() |
|
|
if s.startswith('http') and s.endswith('.zip'): # URL |
|
|
f = Path(s).name # filename |
|
|
LOGGER.info(f'Downloading {s} to {f}...') |
|
|
torch.hub.download_url_to_file(s, f) |
|
|
Path(DATASETS_DIR).mkdir(parents=True, exist_ok=True) # create root |
|
|
unzip_file(f, path=DATASETS_DIR) # unzip |
|
|
Path(f).unlink() # remove zip |
|
|
r = None # success |
|
|
elif s.startswith('bash '): # bash script |
|
|
LOGGER.info(f'Running {s} ...') |
|
|
r = os.system(s) |
|
|
else: # python script |
|
|
r = exec(s, {'yaml': data}) # return None |
|
|
dt = f'({round(time.time() - t, 1)}s)' |
|
|
s = f"success ✅ {dt}, saved to {colorstr('bold', DATASETS_DIR)}" if r in (0, None) else f"failure {dt} ❌" |
|
|
LOGGER.info(f"Dataset download {s}") |
|
|
check_font('Arial.ttf' if is_ascii(data['names']) else 'Arial.Unicode.ttf', progress=True) # download fonts |
|
|
return data # dictionary |
|
|
|
|
|
|
|
|
def check_dataset(dataset: str): |
|
|
data = Path.cwd() / "datasets" / dataset |
|
|
data_dir = data if data.is_dir() else (Path.cwd() / data) |
|
|
if not data_dir.is_dir(): |
|
|
LOGGER.info(f'\nDataset not found ⚠️, missing path {data_dir}, attempting download...') |
|
|
t = time.time() |
|
|
if str(data) == 'imagenet': |
|
|
subprocess.run(f"bash {ROOT / 'data/scripts/get_imagenet.sh'}", shell=True, check=True) |
|
|
else: |
|
|
url = f'https://github.com/ultralytics/yolov5/releases/download/v1.0/{dataset}.zip' |
|
|
download(url, dir=data_dir.parent) |
|
|
s = f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {colorstr('bold', data_dir)}\n" |
|
|
LOGGER.info(s) |
|
|
train_set = data_dir / "train" |
|
|
test_set = data_dir / 'test' if (data_dir / 'test').exists() else data_dir / 'val' # data/test or data/val |
|
|
nc = len([x for x in (data_dir / 'train').glob('*') if x.is_dir()]) # number of classes |
|
|
names = [name for name in os.listdir(data_dir / 'train') if os.path.isdir(data_dir / 'train' / name)] |
|
|
data = {"train": train_set, "val": test_set, "nc": nc, "names": names} |
|
|
return data
|
|
|
|