|
|
import os |
|
|
import random |
|
|
|
|
|
import numpy as np |
|
|
import torch |
|
|
from torch.utils.data import DataLoader, dataloader, distributed |
|
|
|
|
|
from ..utils import LOGGER, colorstr |
|
|
from ..utils.torch_utils import torch_distributed_zero_first |
|
|
from .dataset import ClassificationDataset, YOLODataset |
|
|
from .utils import PIN_MEMORY, RANK |
|
|
|
|
|
|
|
|
class InfiniteDataLoader(dataloader.DataLoader): |
|
|
"""Dataloader that reuses workers |
|
|
|
|
|
Uses same syntax as vanilla DataLoader |
|
|
""" |
|
|
|
|
|
def __init__(self, *args, **kwargs): |
|
|
super().__init__(*args, **kwargs) |
|
|
object.__setattr__(self, "batch_sampler", _RepeatSampler(self.batch_sampler)) |
|
|
self.iterator = super().__iter__() |
|
|
|
|
|
def __len__(self): |
|
|
return len(self.batch_sampler.sampler) |
|
|
|
|
|
def __iter__(self): |
|
|
for _ in range(len(self)): |
|
|
yield next(self.iterator) |
|
|
|
|
|
|
|
|
class _RepeatSampler: |
|
|
"""Sampler that repeats forever |
|
|
|
|
|
Args: |
|
|
sampler (Sampler) |
|
|
""" |
|
|
|
|
|
def __init__(self, sampler): |
|
|
self.sampler = sampler |
|
|
|
|
|
def __iter__(self): |
|
|
while True: |
|
|
yield from iter(self.sampler) |
|
|
|
|
|
|
|
|
def seed_worker(worker_id): |
|
|
# Set dataloader worker seed https://pytorch.org/docs/stable/notes/randomness.html#dataloader |
|
|
worker_seed = torch.initial_seed() % 2 ** 32 |
|
|
np.random.seed(worker_seed) |
|
|
random.seed(worker_seed) |
|
|
|
|
|
|
|
|
def build_dataloader(cfg, batch_size, img_path, stride=32, label_path=None, rank=-1, mode="train"): |
|
|
assert mode in ["train", "val"] |
|
|
shuffle = mode == "train" |
|
|
if cfg.rect and shuffle: |
|
|
LOGGER.warning("WARNING ⚠️ --rect is incompatible with DataLoader shuffle, setting shuffle=False") |
|
|
shuffle = False |
|
|
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP |
|
|
dataset = YOLODataset( |
|
|
img_path=img_path, |
|
|
label_path=label_path, |
|
|
imgsz=cfg.imgsz, |
|
|
batch_size=batch_size, |
|
|
augment=mode == "train", # augmentation |
|
|
hyp=cfg, # TODO: probably add a get_hyps_from_cfg function |
|
|
rect=cfg.rect if mode == "train" else True, # rectangular batches |
|
|
cache=None if cfg.noval else cfg.get("cache", None), |
|
|
single_cls=cfg.get("single_cls", False), |
|
|
stride=int(stride), |
|
|
pad=0.0 if mode == "train" else 0.5, |
|
|
prefix=colorstr(f"{mode}: "), |
|
|
use_segments=cfg.task == "segment", |
|
|
use_keypoints=cfg.task == "keypoint") |
|
|
|
|
|
batch_size = min(batch_size, len(dataset)) |
|
|
nd = torch.cuda.device_count() # number of CUDA devices |
|
|
workers = cfg.workers if mode == "train" else cfg.workers * 2 |
|
|
nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers]) # number of workers |
|
|
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle) |
|
|
loader = DataLoader if cfg.image_weights or cfg.close_mosaic else InfiniteDataLoader # allow attribute updates |
|
|
generator = torch.Generator() |
|
|
generator.manual_seed(6148914691236517205 + RANK) |
|
|
return loader(dataset=dataset, |
|
|
batch_size=batch_size, |
|
|
shuffle=shuffle and sampler is None, |
|
|
num_workers=nw, |
|
|
sampler=sampler, |
|
|
pin_memory=PIN_MEMORY, |
|
|
collate_fn=getattr(dataset, "collate_fn", None), |
|
|
worker_init_fn=seed_worker, |
|
|
generator=generator), dataset |
|
|
|
|
|
|
|
|
# build classification |
|
|
# TODO: using cfg like `build_dataloader` |
|
|
def build_classification_dataloader(path, |
|
|
imgsz=224, |
|
|
batch_size=16, |
|
|
augment=True, |
|
|
cache=False, |
|
|
rank=-1, |
|
|
workers=8, |
|
|
shuffle=True): |
|
|
# Returns Dataloader object to be used with YOLOv5 Classifier |
|
|
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP |
|
|
dataset = ClassificationDataset(root=path, imgsz=imgsz, augment=augment, cache=cache) |
|
|
batch_size = min(batch_size, len(dataset)) |
|
|
nd = torch.cuda.device_count() |
|
|
nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers]) |
|
|
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle) |
|
|
generator = torch.Generator() |
|
|
generator.manual_seed(6148914691236517205 + RANK) |
|
|
return InfiniteDataLoader(dataset, |
|
|
batch_size=batch_size, |
|
|
shuffle=shuffle and sampler is None, |
|
|
num_workers=nw, |
|
|
sampler=sampler, |
|
|
pin_memory=PIN_MEMORY, |
|
|
worker_init_fn=seed_worker, |
|
|
generator=generator) # or DataLoader(persistent_workers=True)
|
|
|
|