You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

8.6 KiB

Ultralytics YOLO

Default training settings and hyperparameters for medium-augmentation COCO training

Setting the operation type

???+ note "Operation"

| Key    | Value    | Description                                                                                                                                                                                 |
|--------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| task  | `detect` | Set the task via CLI. See Tasks for all supported tasks like - `detect`, `segment`, `classify`.<br> - `init` is a special case that creates a copy of default.yaml configs to the current working dir |
| mode  | `train`  | Set the mode via CLI. It can be `train`, `val`, `predict`   |
| resume  | `False`  | Resume last given task when set to `True`. <br> Resume from a given checkpoint is `model.pt` is passed  |
| model | null     | Set the model. Format can differ for task type. Supports `model_name`, `model.yaml` & `model.pt`                                                                                            |
| data  | null     | Set the data. Format can differ for task type. Supports `data.yaml`, `data_folder`, `dataset_name`|

Training settings

??? note "Train"

Key Value Description
device '' cuda device, i.e. 0 or 0,1,2,3 or cpu. '' selects available cuda 0 device
epochs 100 Number of epochs to train
workers 8 Number of cpu workers used per process. Scales automatically with DDP
batch_size 16 Batch size of the dataloader
imgsz 640 Image size of data in dataloader
optimizer SGD Optimizer used. Supported optimizer are: Adam, SGD, RMSProp
single_cls False Train on multi-class data as single-class
image_weights False Use weighted image selection for training
rect False Enable rectangular training
cos_lr False Use cosine LR scheduler
lr0 0.01 Initial learning rate
lrf 0.01 Final OneCycleLR learning rate
momentum 0.937 Use as momentum for SGD and beta1 for Adam
weight_decay 0.0005 Optimizer weight decay
warmup_epochs 3.0 Warmup epochs. Fractions are ok.
warmup_momentum 0.8 Warmup initial momentum
warmup_bias_lr 0.1 Warmup initial bias lr
box 0.05 Box loss gain
cls 0.5 cls loss gain
cls_pw 1.0 cls BCELoss positive_weight
obj 1.0 bj loss gain (scale with pixels)
obj_pw 1.0 obj BCELoss positive_weight
iou_t 0.20 IOU training threshold
anchor_t 4.0 anchor-multiple threshold
fl_gamma 0.0 focal loss gamma
label_smoothing 0.0
nbs 64 nominal batch size
overlap_mask True Segmentation: Use mask overlapping during training
mask_ratio 4 Segmentation: Set mask downsampling
dropout False Classification: Use dropout while training

Prediction Settings

??? note "Prediction"

Key Value Description
source ultralytics/assets Input source. Accepts image, folder, video, url
view_img False View the prediction images
save_txt False Save the results in a txt file
save_conf False Save the condidence scores
save_crop Fasle
hide_labels False Hide the labels
hide_conf False Hide the confidence scores
vid_stride False Input video frame-rate stride
line_thickness 3 Bounding-box thickness (pixels)
visualize False Visualize model features
augment False Augmented inference
agnostic_nms False Class-agnostic NMS
retina_masks False Segmentation: High resolution masks

Validation settings

??? note "Validation"

Key Value Description
noval False ???
save_json False
save_hybrid False
conf_thres 0.001 Confidence threshold
iou_thres 0.6 IoU threshold
max_det 300 Maximum number of detections
half True Use .half() mode.
dnn False Use OpenCV DNN for ONNX inference
plots False

Augmentation settings

??? note "Augmentation"

| hsv_h       | 0.015 | Image HSV-Hue augmentation (fraction)           |
|-------------|-------|-------------------------------------------------|
| hsv_s       | 0.7   | Image HSV-Saturation augmentation (fraction)    |
| hsv_v       | 0.4   | Image HSV-Value augmentation (fraction)         |
| degrees     | 0.0   | Image rotation (+/- deg)                        |
| translate   | 0.1   | Image translation (+/- fraction)                |
| scale       | 0.5   | Image scale (+/- gain)                          |
| shear       | 0.0   | Image shear (+/- deg)                           |
| perspective | 0.0   | Image perspective (+/- fraction), range 0-0.001 |
| flipud      | 0.0   | Image flip up-down (probability)                |
| fliplr      | 0.5   | Image flip left-right (probability)             |
| mosaic      | 1.0   | Image mosaic (probability)                      |
| mixup       | 0.0   | Image mixup (probability)                       |
| copy_paste  | 0.0   | Segment copy-paste (probability)                |

Logging, checkpoints, plotting and file management

??? note "files"

Key Value Description
project: 'runs' The project name
name: 'exp' The run name. exp gets automatically incremented if not specified, i.e, exp, exp2 ...
exist_ok: False ???
plots False Validation: Save plots while validation
nosave False Don't save any plots, models or files