You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
8.6 KiB
8.6 KiB
Ultralytics YOLO
Default training settings and hyperparameters for medium-augmentation COCO training
Setting the operation type
???+ note "Operation"
| Key | Value | Description |
|--------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| task | `detect` | Set the task via CLI. See Tasks for all supported tasks like - `detect`, `segment`, `classify`.<br> - `init` is a special case that creates a copy of default.yaml configs to the current working dir |
| mode | `train` | Set the mode via CLI. It can be `train`, `val`, `predict` |
| resume | `False` | Resume last given task when set to `True`. <br> Resume from a given checkpoint is `model.pt` is passed |
| model | null | Set the model. Format can differ for task type. Supports `model_name`, `model.yaml` & `model.pt` |
| data | null | Set the data. Format can differ for task type. Supports `data.yaml`, `data_folder`, `dataset_name`|
Training settings
??? note "Train"
Key | Value | Description |
---|---|---|
device | '' | cuda device, i.e. 0 or 0,1,2,3 or cpu. '' selects available cuda 0 device |
epochs | 100 | Number of epochs to train |
workers | 8 | Number of cpu workers used per process. Scales automatically with DDP |
batch_size | 16 | Batch size of the dataloader |
imgsz | 640 | Image size of data in dataloader |
optimizer | SGD | Optimizer used. Supported optimizer are: Adam , SGD , RMSProp |
single_cls | False | Train on multi-class data as single-class |
image_weights | False | Use weighted image selection for training |
rect | False | Enable rectangular training |
cos_lr | False | Use cosine LR scheduler |
lr0 | 0.01 | Initial learning rate |
lrf | 0.01 | Final OneCycleLR learning rate |
momentum | 0.937 | Use as momentum for SGD and beta1 for Adam |
weight_decay | 0.0005 | Optimizer weight decay |
warmup_epochs | 3.0 | Warmup epochs. Fractions are ok. |
warmup_momentum | 0.8 | Warmup initial momentum |
warmup_bias_lr | 0.1 | Warmup initial bias lr |
box | 0.05 | Box loss gain |
cls | 0.5 | cls loss gain |
cls_pw | 1.0 | cls BCELoss positive_weight |
obj | 1.0 | bj loss gain (scale with pixels) |
obj_pw | 1.0 | obj BCELoss positive_weight |
iou_t | 0.20 | IOU training threshold |
anchor_t | 4.0 | anchor-multiple threshold |
fl_gamma | 0.0 | focal loss gamma |
label_smoothing | 0.0 | |
nbs | 64 | nominal batch size |
overlap_mask | True |
Segmentation: Use mask overlapping during training |
mask_ratio | 4 | Segmentation: Set mask downsampling |
dropout | False |
Classification: Use dropout while training |
Prediction Settings
??? note "Prediction"
Key | Value | Description |
---|---|---|
source | ultralytics/assets |
Input source. Accepts image, folder, video, url |
view_img | False |
View the prediction images |
save_txt | False |
Save the results in a txt file |
save_conf | False |
Save the condidence scores |
save_crop | Fasle |
|
hide_labels | False |
Hide the labels |
hide_conf | False |
Hide the confidence scores |
vid_stride | False |
Input video frame-rate stride |
line_thickness | 3 |
Bounding-box thickness (pixels) |
visualize | False |
Visualize model features |
augment | False |
Augmented inference |
agnostic_nms | False |
Class-agnostic NMS |
retina_masks | False |
Segmentation: High resolution masks |
Validation settings
??? note "Validation"
Key | Value | Description |
---|---|---|
noval | False |
??? |
save_json | False |
|
save_hybrid | False |
|
conf_thres | 0.001 |
Confidence threshold |
iou_thres | 0.6 |
IoU threshold |
max_det | 300 |
Maximum number of detections |
half | True |
Use .half() mode. |
dnn | False |
Use OpenCV DNN for ONNX inference |
plots | False |
Augmentation settings
??? note "Augmentation"
| hsv_h | 0.015 | Image HSV-Hue augmentation (fraction) |
|-------------|-------|-------------------------------------------------|
| hsv_s | 0.7 | Image HSV-Saturation augmentation (fraction) |
| hsv_v | 0.4 | Image HSV-Value augmentation (fraction) |
| degrees | 0.0 | Image rotation (+/- deg) |
| translate | 0.1 | Image translation (+/- fraction) |
| scale | 0.5 | Image scale (+/- gain) |
| shear | 0.0 | Image shear (+/- deg) |
| perspective | 0.0 | Image perspective (+/- fraction), range 0-0.001 |
| flipud | 0.0 | Image flip up-down (probability) |
| fliplr | 0.5 | Image flip left-right (probability) |
| mosaic | 1.0 | Image mosaic (probability) |
| mixup | 0.0 | Image mixup (probability) |
| copy_paste | 0.0 | Segment copy-paste (probability) |
Logging, checkpoints, plotting and file management
??? note "files"
Key | Value | Description |
---|---|---|
project: | 'runs' | The project name |
name: | 'exp' | The run name. exp gets automatically incremented if not specified, i.e, exp , exp2 ... |
exist_ok: | False |
??? |
plots | False |
Validation: Save plots while validation |
nosave | False |
Don't save any plots, models or files |