You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
230 lines
9.0 KiB
230 lines
9.0 KiB
import json |
|
from collections import defaultdict |
|
from pathlib import Path |
|
|
|
import cv2 |
|
import numpy as np |
|
from tqdm import tqdm |
|
|
|
from ultralytics.yolo.utils.checks import check_requirements |
|
from ultralytics.yolo.utils.files import make_dirs |
|
|
|
|
|
def coco91_to_coco80_class(): |
|
"""Converts 91-index COCO class IDs to 80-index COCO class IDs. |
|
|
|
Returns: |
|
(list): A list of 91 class IDs where the index represents the 80-index class ID and the value is the |
|
corresponding 91-index class ID. |
|
|
|
""" |
|
return [ |
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, None, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, None, 24, 25, None, |
|
None, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, None, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, |
|
51, 52, 53, 54, 55, 56, 57, 58, 59, None, 60, None, None, 61, None, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, |
|
None, 73, 74, 75, 76, 77, 78, 79, None] |
|
|
|
|
|
def convert_coco(labels_dir='../coco/annotations/', use_segments=False, use_keypoints=False, cls91to80=True): |
|
"""Converts COCO dataset annotations to a format suitable for training YOLOv5 models. |
|
|
|
Args: |
|
labels_dir (str, optional): Path to directory containing COCO dataset annotation files. |
|
use_segments (bool, optional): Whether to include segmentation masks in the output. |
|
use_keypoints (bool, optional): Whether to include keypoint annotations in the output. |
|
cls91to80 (bool, optional): Whether to map 91 COCO class IDs to the corresponding 80 COCO class IDs. |
|
|
|
Raises: |
|
FileNotFoundError: If the labels_dir path does not exist. |
|
|
|
Example Usage: |
|
convert_coco(labels_dir='../coco/annotations/', use_segments=True, use_keypoints=True, cls91to80=True) |
|
|
|
Output: |
|
Generates output files in the specified output directory. |
|
""" |
|
|
|
save_dir = make_dirs('yolo_labels') # output directory |
|
coco80 = coco91_to_coco80_class() |
|
|
|
# Import json |
|
for json_file in sorted(Path(labels_dir).resolve().glob('*.json')): |
|
fn = Path(save_dir) / 'labels' / json_file.stem.replace('instances_', '') # folder name |
|
fn.mkdir(parents=True, exist_ok=True) |
|
with open(json_file) as f: |
|
data = json.load(f) |
|
|
|
# Create image dict |
|
images = {'%g' % x['id']: x for x in data['images']} |
|
# Create image-annotations dict |
|
imgToAnns = defaultdict(list) |
|
for ann in data['annotations']: |
|
imgToAnns[ann['image_id']].append(ann) |
|
|
|
# Write labels file |
|
for img_id, anns in tqdm(imgToAnns.items(), desc=f'Annotations {json_file}'): |
|
img = images['%g' % img_id] |
|
h, w, f = img['height'], img['width'], img['file_name'] |
|
|
|
bboxes = [] |
|
segments = [] |
|
keypoints = [] |
|
for ann in anns: |
|
if ann['iscrowd']: |
|
continue |
|
# The COCO box format is [top left x, top left y, width, height] |
|
box = np.array(ann['bbox'], dtype=np.float64) |
|
box[:2] += box[2:] / 2 # xy top-left corner to center |
|
box[[0, 2]] /= w # normalize x |
|
box[[1, 3]] /= h # normalize y |
|
if box[2] <= 0 or box[3] <= 0: # if w <= 0 and h <= 0 |
|
continue |
|
|
|
cls = coco80[ann['category_id'] - 1] if cls91to80 else ann['category_id'] - 1 # class |
|
box = [cls] + box.tolist() |
|
if box not in bboxes: |
|
bboxes.append(box) |
|
if use_segments and ann.get('segmentation') is not None: |
|
if len(ann['segmentation']) == 0: |
|
segments.append([]) |
|
continue |
|
if isinstance(ann['segmentation'], dict): |
|
ann['segmentation'] = rle2polygon(ann['segmentation']) |
|
if len(ann['segmentation']) > 1: |
|
s = merge_multi_segment(ann['segmentation']) |
|
s = (np.concatenate(s, axis=0) / np.array([w, h])).reshape(-1).tolist() |
|
else: |
|
s = [j for i in ann['segmentation'] for j in i] # all segments concatenated |
|
s = (np.array(s).reshape(-1, 2) / np.array([w, h])).reshape(-1).tolist() |
|
s = [cls] + s |
|
if s not in segments: |
|
segments.append(s) |
|
if use_keypoints and ann.get('keypoints') is not None: |
|
k = (np.array(ann['keypoints']).reshape(-1, 3) / np.array([w, h, 1])).reshape(-1).tolist() |
|
k = box + k |
|
keypoints.append(k) |
|
|
|
# Write |
|
with open((fn / f).with_suffix('.txt'), 'a') as file: |
|
for i in range(len(bboxes)): |
|
if use_keypoints: |
|
line = *(keypoints[i]), # cls, box, keypoints |
|
else: |
|
line = *(segments[i] |
|
if use_segments and len(segments[i]) > 0 else bboxes[i]), # cls, box or segments |
|
file.write(('%g ' * len(line)).rstrip() % line + '\n') |
|
|
|
|
|
def rle2polygon(segmentation): |
|
""" |
|
Convert Run-Length Encoding (RLE) mask to polygon coordinates. |
|
|
|
Args: |
|
segmentation (dict, list): RLE mask representation of the object segmentation. |
|
|
|
Returns: |
|
(list): A list of lists representing the polygon coordinates for each contour. |
|
|
|
Note: |
|
Requires the 'pycocotools' package to be installed. |
|
""" |
|
check_requirements('pycocotools') |
|
from pycocotools import mask |
|
|
|
m = mask.decode(segmentation) |
|
m[m > 0] = 255 |
|
contours, _ = cv2.findContours(m, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_KCOS) |
|
polygons = [] |
|
for contour in contours: |
|
epsilon = 0.001 * cv2.arcLength(contour, True) |
|
contour_approx = cv2.approxPolyDP(contour, epsilon, True) |
|
polygon = contour_approx.flatten().tolist() |
|
polygons.append(polygon) |
|
return polygons |
|
|
|
|
|
def min_index(arr1, arr2): |
|
""" |
|
Find a pair of indexes with the shortest distance between two arrays of 2D points. |
|
|
|
Args: |
|
arr1 (np.array): A NumPy array of shape (N, 2) representing N 2D points. |
|
arr2 (np.array): A NumPy array of shape (M, 2) representing M 2D points. |
|
|
|
Returns: |
|
(tuple): A tuple containing the indexes of the points with the shortest distance in arr1 and arr2 respectively. |
|
""" |
|
dis = ((arr1[:, None, :] - arr2[None, :, :]) ** 2).sum(-1) |
|
return np.unravel_index(np.argmin(dis, axis=None), dis.shape) |
|
|
|
|
|
def merge_multi_segment(segments): |
|
""" |
|
Merge multiple segments into one list by connecting the coordinates with the minimum distance between each segment. |
|
This function connects these coordinates with a thin line to merge all segments into one. |
|
|
|
Args: |
|
segments (List[List]): Original segmentations in COCO's JSON file. |
|
Each element is a list of coordinates, like [segmentation1, segmentation2,...]. |
|
|
|
Returns: |
|
s (List[np.ndarray]): A list of connected segments represented as NumPy arrays. |
|
""" |
|
s = [] |
|
segments = [np.array(i).reshape(-1, 2) for i in segments] |
|
idx_list = [[] for _ in range(len(segments))] |
|
|
|
# record the indexes with min distance between each segment |
|
for i in range(1, len(segments)): |
|
idx1, idx2 = min_index(segments[i - 1], segments[i]) |
|
idx_list[i - 1].append(idx1) |
|
idx_list[i].append(idx2) |
|
|
|
# use two round to connect all the segments |
|
for k in range(2): |
|
# forward connection |
|
if k == 0: |
|
for i, idx in enumerate(idx_list): |
|
# middle segments have two indexes |
|
# reverse the index of middle segments |
|
if len(idx) == 2 and idx[0] > idx[1]: |
|
idx = idx[::-1] |
|
segments[i] = segments[i][::-1, :] |
|
|
|
segments[i] = np.roll(segments[i], -idx[0], axis=0) |
|
segments[i] = np.concatenate([segments[i], segments[i][:1]]) |
|
# deal with the first segment and the last one |
|
if i in [0, len(idx_list) - 1]: |
|
s.append(segments[i]) |
|
else: |
|
idx = [0, idx[1] - idx[0]] |
|
s.append(segments[i][idx[0]:idx[1] + 1]) |
|
|
|
else: |
|
for i in range(len(idx_list) - 1, -1, -1): |
|
if i not in [0, len(idx_list) - 1]: |
|
idx = idx_list[i] |
|
nidx = abs(idx[1] - idx[0]) |
|
s.append(segments[i][nidx:]) |
|
return s |
|
|
|
|
|
def delete_dsstore(path='../datasets'): |
|
"""Delete Apple .DS_Store files in the specified directory and its subdirectories.""" |
|
from pathlib import Path |
|
|
|
files = list(Path(path).rglob('.DS_store')) |
|
print(files) |
|
for f in files: |
|
f.unlink() |
|
|
|
|
|
if __name__ == '__main__': |
|
source = 'COCO' |
|
|
|
if source == 'COCO': |
|
convert_coco( |
|
'../datasets/coco/annotations', # directory with *.json |
|
use_segments=False, |
|
use_keypoints=True, |
|
cls91to80=False)
|
|
|