You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
109 lines
4.3 KiB
109 lines
4.3 KiB
# Ultralytics YOLO 🚀, AGPL-3.0 license |
|
""" |
|
# RT-DETR model interface |
|
""" |
|
|
|
from pathlib import Path |
|
|
|
from ultralytics.nn.tasks import DetectionModel, attempt_load_one_weight, yaml_model_load |
|
from ultralytics.yolo.cfg import get_cfg |
|
from ultralytics.yolo.engine.exporter import Exporter |
|
from ultralytics.yolo.utils import DEFAULT_CFG, DEFAULT_CFG_DICT |
|
from ultralytics.yolo.utils.checks import check_imgsz |
|
from ultralytics.yolo.utils.torch_utils import model_info |
|
|
|
from ...yolo.utils.torch_utils import smart_inference_mode |
|
from .predict import RTDETRPredictor |
|
from .val import RTDETRValidator |
|
|
|
|
|
class RTDETR: |
|
|
|
def __init__(self, model='rtdetr-l.pt') -> None: |
|
if model and not model.endswith('.pt') and not model.endswith('.yaml'): |
|
raise NotImplementedError('RT-DETR only supports creating from pt file or yaml file.') |
|
# Load or create new YOLO model |
|
self.predictor = None |
|
suffix = Path(model).suffix |
|
if suffix == '.yaml': |
|
self._new(model) |
|
else: |
|
self._load(model) |
|
|
|
def _new(self, cfg: str, verbose=True): |
|
cfg_dict = yaml_model_load(cfg) |
|
self.cfg = cfg |
|
self.task = 'detect' |
|
self.model = DetectionModel(cfg_dict, verbose=verbose) # build model |
|
|
|
# Below added to allow export from yamls |
|
self.model.args = DEFAULT_CFG_DICT # attach args to model |
|
self.model.task = self.task |
|
|
|
@smart_inference_mode() |
|
def _load(self, weights: str): |
|
self.model, _ = attempt_load_one_weight(weights) |
|
self.model.args = DEFAULT_CFG_DICT # attach args to model |
|
self.task = self.model.args['task'] |
|
|
|
@smart_inference_mode() |
|
def predict(self, source, stream=False, **kwargs): |
|
""" |
|
Perform prediction using the YOLO model. |
|
|
|
Args: |
|
source (str | int | PIL | np.ndarray): The source of the image to make predictions on. |
|
Accepts all source types accepted by the YOLO model. |
|
stream (bool): Whether to stream the predictions or not. Defaults to False. |
|
**kwargs : Additional keyword arguments passed to the predictor. |
|
Check the 'configuration' section in the documentation for all available options. |
|
|
|
Returns: |
|
(List[ultralytics.yolo.engine.results.Results]): The prediction results. |
|
""" |
|
overrides = dict(conf=0.25, task='detect', mode='predict') |
|
overrides.update(kwargs) # prefer kwargs |
|
if not self.predictor: |
|
self.predictor = RTDETRPredictor(overrides=overrides) |
|
self.predictor.setup_model(model=self.model) |
|
else: # only update args if predictor is already setup |
|
self.predictor.args = get_cfg(self.predictor.args, overrides) |
|
return self.predictor(source, stream=stream) |
|
|
|
def train(self, **kwargs): |
|
"""Function trains models but raises an error as RTDETR models do not support training.""" |
|
raise NotImplementedError("RTDETR models don't support training") |
|
|
|
def val(self, **kwargs): |
|
"""Run validation given dataset.""" |
|
overrides = dict(task='detect', mode='val') |
|
overrides.update(kwargs) # prefer kwargs |
|
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides) |
|
args.imgsz = check_imgsz(args.imgsz, max_dim=1) |
|
validator = RTDETRValidator(args=args) |
|
validator(model=self.model) |
|
self.metrics = validator.metrics |
|
return validator.metrics |
|
|
|
def info(self, verbose=True): |
|
"""Get model info""" |
|
return model_info(self.model, verbose=verbose) |
|
|
|
@smart_inference_mode() |
|
def export(self, **kwargs): |
|
""" |
|
Export model. |
|
|
|
Args: |
|
**kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs |
|
""" |
|
overrides = dict(task='detect') |
|
overrides.update(kwargs) |
|
overrides['mode'] = 'export' |
|
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides) |
|
args.task = self.task |
|
if args.imgsz == DEFAULT_CFG.imgsz: |
|
args.imgsz = self.model.args['imgsz'] # use trained imgsz unless custom value is passed |
|
if args.batch == DEFAULT_CFG.batch: |
|
args.batch = 1 # default to 1 if not modified |
|
return Exporter(overrides=args)(model=self.model)
|
|
|