You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
443 lines
9.1 KiB
443 lines
9.1 KiB
# Ultralytics YOLO 🚀, AGPL-3.0 license |
|
# Objects365 dataset https://www.objects365.org/ by Megvii |
|
# Example usage: yolo train data=Objects365.yaml |
|
# parent |
|
# ├── ultralytics |
|
# └── datasets |
|
# └── Objects365 ← downloads here (712 GB = 367G data + 345G zips) |
|
|
|
|
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] |
|
path: ../datasets/Objects365 # dataset root dir |
|
train: images/train # train images (relative to 'path') 1742289 images |
|
val: images/val # val images (relative to 'path') 80000 images |
|
test: # test images (optional) |
|
|
|
# Classes |
|
names: |
|
0: Person |
|
1: Sneakers |
|
2: Chair |
|
3: Other Shoes |
|
4: Hat |
|
5: Car |
|
6: Lamp |
|
7: Glasses |
|
8: Bottle |
|
9: Desk |
|
10: Cup |
|
11: Street Lights |
|
12: Cabinet/shelf |
|
13: Handbag/Satchel |
|
14: Bracelet |
|
15: Plate |
|
16: Picture/Frame |
|
17: Helmet |
|
18: Book |
|
19: Gloves |
|
20: Storage box |
|
21: Boat |
|
22: Leather Shoes |
|
23: Flower |
|
24: Bench |
|
25: Potted Plant |
|
26: Bowl/Basin |
|
27: Flag |
|
28: Pillow |
|
29: Boots |
|
30: Vase |
|
31: Microphone |
|
32: Necklace |
|
33: Ring |
|
34: SUV |
|
35: Wine Glass |
|
36: Belt |
|
37: Monitor/TV |
|
38: Backpack |
|
39: Umbrella |
|
40: Traffic Light |
|
41: Speaker |
|
42: Watch |
|
43: Tie |
|
44: Trash bin Can |
|
45: Slippers |
|
46: Bicycle |
|
47: Stool |
|
48: Barrel/bucket |
|
49: Van |
|
50: Couch |
|
51: Sandals |
|
52: Basket |
|
53: Drum |
|
54: Pen/Pencil |
|
55: Bus |
|
56: Wild Bird |
|
57: High Heels |
|
58: Motorcycle |
|
59: Guitar |
|
60: Carpet |
|
61: Cell Phone |
|
62: Bread |
|
63: Camera |
|
64: Canned |
|
65: Truck |
|
66: Traffic cone |
|
67: Cymbal |
|
68: Lifesaver |
|
69: Towel |
|
70: Stuffed Toy |
|
71: Candle |
|
72: Sailboat |
|
73: Laptop |
|
74: Awning |
|
75: Bed |
|
76: Faucet |
|
77: Tent |
|
78: Horse |
|
79: Mirror |
|
80: Power outlet |
|
81: Sink |
|
82: Apple |
|
83: Air Conditioner |
|
84: Knife |
|
85: Hockey Stick |
|
86: Paddle |
|
87: Pickup Truck |
|
88: Fork |
|
89: Traffic Sign |
|
90: Balloon |
|
91: Tripod |
|
92: Dog |
|
93: Spoon |
|
94: Clock |
|
95: Pot |
|
96: Cow |
|
97: Cake |
|
98: Dinning Table |
|
99: Sheep |
|
100: Hanger |
|
101: Blackboard/Whiteboard |
|
102: Napkin |
|
103: Other Fish |
|
104: Orange/Tangerine |
|
105: Toiletry |
|
106: Keyboard |
|
107: Tomato |
|
108: Lantern |
|
109: Machinery Vehicle |
|
110: Fan |
|
111: Green Vegetables |
|
112: Banana |
|
113: Baseball Glove |
|
114: Airplane |
|
115: Mouse |
|
116: Train |
|
117: Pumpkin |
|
118: Soccer |
|
119: Skiboard |
|
120: Luggage |
|
121: Nightstand |
|
122: Tea pot |
|
123: Telephone |
|
124: Trolley |
|
125: Head Phone |
|
126: Sports Car |
|
127: Stop Sign |
|
128: Dessert |
|
129: Scooter |
|
130: Stroller |
|
131: Crane |
|
132: Remote |
|
133: Refrigerator |
|
134: Oven |
|
135: Lemon |
|
136: Duck |
|
137: Baseball Bat |
|
138: Surveillance Camera |
|
139: Cat |
|
140: Jug |
|
141: Broccoli |
|
142: Piano |
|
143: Pizza |
|
144: Elephant |
|
145: Skateboard |
|
146: Surfboard |
|
147: Gun |
|
148: Skating and Skiing shoes |
|
149: Gas stove |
|
150: Donut |
|
151: Bow Tie |
|
152: Carrot |
|
153: Toilet |
|
154: Kite |
|
155: Strawberry |
|
156: Other Balls |
|
157: Shovel |
|
158: Pepper |
|
159: Computer Box |
|
160: Toilet Paper |
|
161: Cleaning Products |
|
162: Chopsticks |
|
163: Microwave |
|
164: Pigeon |
|
165: Baseball |
|
166: Cutting/chopping Board |
|
167: Coffee Table |
|
168: Side Table |
|
169: Scissors |
|
170: Marker |
|
171: Pie |
|
172: Ladder |
|
173: Snowboard |
|
174: Cookies |
|
175: Radiator |
|
176: Fire Hydrant |
|
177: Basketball |
|
178: Zebra |
|
179: Grape |
|
180: Giraffe |
|
181: Potato |
|
182: Sausage |
|
183: Tricycle |
|
184: Violin |
|
185: Egg |
|
186: Fire Extinguisher |
|
187: Candy |
|
188: Fire Truck |
|
189: Billiards |
|
190: Converter |
|
191: Bathtub |
|
192: Wheelchair |
|
193: Golf Club |
|
194: Briefcase |
|
195: Cucumber |
|
196: Cigar/Cigarette |
|
197: Paint Brush |
|
198: Pear |
|
199: Heavy Truck |
|
200: Hamburger |
|
201: Extractor |
|
202: Extension Cord |
|
203: Tong |
|
204: Tennis Racket |
|
205: Folder |
|
206: American Football |
|
207: earphone |
|
208: Mask |
|
209: Kettle |
|
210: Tennis |
|
211: Ship |
|
212: Swing |
|
213: Coffee Machine |
|
214: Slide |
|
215: Carriage |
|
216: Onion |
|
217: Green beans |
|
218: Projector |
|
219: Frisbee |
|
220: Washing Machine/Drying Machine |
|
221: Chicken |
|
222: Printer |
|
223: Watermelon |
|
224: Saxophone |
|
225: Tissue |
|
226: Toothbrush |
|
227: Ice cream |
|
228: Hot-air balloon |
|
229: Cello |
|
230: French Fries |
|
231: Scale |
|
232: Trophy |
|
233: Cabbage |
|
234: Hot dog |
|
235: Blender |
|
236: Peach |
|
237: Rice |
|
238: Wallet/Purse |
|
239: Volleyball |
|
240: Deer |
|
241: Goose |
|
242: Tape |
|
243: Tablet |
|
244: Cosmetics |
|
245: Trumpet |
|
246: Pineapple |
|
247: Golf Ball |
|
248: Ambulance |
|
249: Parking meter |
|
250: Mango |
|
251: Key |
|
252: Hurdle |
|
253: Fishing Rod |
|
254: Medal |
|
255: Flute |
|
256: Brush |
|
257: Penguin |
|
258: Megaphone |
|
259: Corn |
|
260: Lettuce |
|
261: Garlic |
|
262: Swan |
|
263: Helicopter |
|
264: Green Onion |
|
265: Sandwich |
|
266: Nuts |
|
267: Speed Limit Sign |
|
268: Induction Cooker |
|
269: Broom |
|
270: Trombone |
|
271: Plum |
|
272: Rickshaw |
|
273: Goldfish |
|
274: Kiwi fruit |
|
275: Router/modem |
|
276: Poker Card |
|
277: Toaster |
|
278: Shrimp |
|
279: Sushi |
|
280: Cheese |
|
281: Notepaper |
|
282: Cherry |
|
283: Pliers |
|
284: CD |
|
285: Pasta |
|
286: Hammer |
|
287: Cue |
|
288: Avocado |
|
289: Hamimelon |
|
290: Flask |
|
291: Mushroom |
|
292: Screwdriver |
|
293: Soap |
|
294: Recorder |
|
295: Bear |
|
296: Eggplant |
|
297: Board Eraser |
|
298: Coconut |
|
299: Tape Measure/Ruler |
|
300: Pig |
|
301: Showerhead |
|
302: Globe |
|
303: Chips |
|
304: Steak |
|
305: Crosswalk Sign |
|
306: Stapler |
|
307: Camel |
|
308: Formula 1 |
|
309: Pomegranate |
|
310: Dishwasher |
|
311: Crab |
|
312: Hoverboard |
|
313: Meat ball |
|
314: Rice Cooker |
|
315: Tuba |
|
316: Calculator |
|
317: Papaya |
|
318: Antelope |
|
319: Parrot |
|
320: Seal |
|
321: Butterfly |
|
322: Dumbbell |
|
323: Donkey |
|
324: Lion |
|
325: Urinal |
|
326: Dolphin |
|
327: Electric Drill |
|
328: Hair Dryer |
|
329: Egg tart |
|
330: Jellyfish |
|
331: Treadmill |
|
332: Lighter |
|
333: Grapefruit |
|
334: Game board |
|
335: Mop |
|
336: Radish |
|
337: Baozi |
|
338: Target |
|
339: French |
|
340: Spring Rolls |
|
341: Monkey |
|
342: Rabbit |
|
343: Pencil Case |
|
344: Yak |
|
345: Red Cabbage |
|
346: Binoculars |
|
347: Asparagus |
|
348: Barbell |
|
349: Scallop |
|
350: Noddles |
|
351: Comb |
|
352: Dumpling |
|
353: Oyster |
|
354: Table Tennis paddle |
|
355: Cosmetics Brush/Eyeliner Pencil |
|
356: Chainsaw |
|
357: Eraser |
|
358: Lobster |
|
359: Durian |
|
360: Okra |
|
361: Lipstick |
|
362: Cosmetics Mirror |
|
363: Curling |
|
364: Table Tennis |
|
|
|
|
|
# Download script/URL (optional) --------------------------------------------------------------------------------------- |
|
download: | |
|
from tqdm import tqdm |
|
|
|
from ultralytics.yolo.utils.checks import check_requirements |
|
from ultralytics.yolo.utils.downloads import download |
|
from ultralytics.yolo.utils.ops import xyxy2xywhn |
|
|
|
import numpy as np |
|
from pathlib import Path |
|
|
|
check_requirements(('pycocotools>=2.0',)) |
|
from pycocotools.coco import COCO |
|
|
|
# Make Directories |
|
dir = Path(yaml['path']) # dataset root dir |
|
for p in 'images', 'labels': |
|
(dir / p).mkdir(parents=True, exist_ok=True) |
|
for q in 'train', 'val': |
|
(dir / p / q).mkdir(parents=True, exist_ok=True) |
|
|
|
# Train, Val Splits |
|
for split, patches in [('train', 50 + 1), ('val', 43 + 1)]: |
|
print(f"Processing {split} in {patches} patches ...") |
|
images, labels = dir / 'images' / split, dir / 'labels' / split |
|
|
|
# Download |
|
url = f"https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/{split}/" |
|
if split == 'train': |
|
download([f'{url}zhiyuan_objv2_{split}.tar.gz'], dir=dir) # annotations json |
|
download([f'{url}patch{i}.tar.gz' for i in range(patches)], dir=images, curl=True, threads=8) |
|
elif split == 'val': |
|
download([f'{url}zhiyuan_objv2_{split}.json'], dir=dir) # annotations json |
|
download([f'{url}images/v1/patch{i}.tar.gz' for i in range(15 + 1)], dir=images, curl=True, threads=8) |
|
download([f'{url}images/v2/patch{i}.tar.gz' for i in range(16, patches)], dir=images, curl=True, threads=8) |
|
|
|
# Move |
|
for f in tqdm(images.rglob('*.jpg'), desc=f'Moving {split} images'): |
|
f.rename(images / f.name) # move to /images/{split} |
|
|
|
# Labels |
|
coco = COCO(dir / f'zhiyuan_objv2_{split}.json') |
|
names = [x["name"] for x in coco.loadCats(coco.getCatIds())] |
|
for cid, cat in enumerate(names): |
|
catIds = coco.getCatIds(catNms=[cat]) |
|
imgIds = coco.getImgIds(catIds=catIds) |
|
for im in tqdm(coco.loadImgs(imgIds), desc=f'Class {cid + 1}/{len(names)} {cat}'): |
|
width, height = im["width"], im["height"] |
|
path = Path(im["file_name"]) # image filename |
|
try: |
|
with open(labels / path.with_suffix('.txt').name, 'a') as file: |
|
annIds = coco.getAnnIds(imgIds=im["id"], catIds=catIds, iscrowd=None) |
|
for a in coco.loadAnns(annIds): |
|
x, y, w, h = a['bbox'] # bounding box in xywh (xy top-left corner) |
|
xyxy = np.array([x, y, x + w, y + h])[None] # pixels(1,4) |
|
x, y, w, h = xyxy2xywhn(xyxy, w=width, h=height, clip=True)[0] # normalized and clipped |
|
file.write(f"{cid} {x:.5f} {y:.5f} {w:.5f} {h:.5f}\n") |
|
except Exception as e: |
|
print(e)
|
|
|