You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
251 lines
11 KiB
251 lines
11 KiB
import hydra |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from ultralytics.yolo import v8 |
|
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG, BaseTrainer |
|
from ultralytics.yolo.utils.metrics import FocalLoss, bbox_iou, smooth_BCE |
|
from ultralytics.yolo.utils.modeling.tasks import SegmentationModel |
|
from ultralytics.yolo.utils.ops import crop_mask, xywh2xyxy |
|
from ultralytics.yolo.utils.plotting import plot_images, plot_results |
|
from ultralytics.yolo.utils.torch_utils import de_parallel |
|
|
|
from ..detect import DetectionTrainer |
|
|
|
|
|
# BaseTrainer python usage |
|
class SegmentationTrainer(DetectionTrainer): |
|
|
|
def load_model(self, model_cfg=None, weights=None): |
|
model = SegmentationModel(model_cfg or weights["model"].yaml, |
|
ch=3, |
|
nc=self.data["nc"], |
|
anchors=self.args.get("anchors")) |
|
if weights: |
|
model.load(weights) |
|
for _, v in model.named_parameters(): |
|
v.requires_grad = True # train all layers |
|
return model |
|
|
|
def get_validator(self): |
|
return v8.segment.SegmentationValidator(self.test_loader, |
|
save_dir=self.save_dir, |
|
logger=self.console, |
|
args=self.args) |
|
|
|
def criterion(self, preds, batch): |
|
head = de_parallel(self.model).model[-1] |
|
sort_obj_iou = False |
|
autobalance = False |
|
|
|
# init losses |
|
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([self.args.cls_pw], device=self.device)) |
|
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([self.args.obj_pw], device=self.device)) |
|
|
|
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3 |
|
cp, cn = smooth_BCE(eps=self.args.label_smoothing) # positive, negative BCE targets |
|
|
|
# Focal loss |
|
g = self.args.fl_gamma |
|
if self.args.fl_gamma > 0: |
|
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g) |
|
|
|
balance = {3: [4.0, 1.0, 0.4]}.get(head.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7 |
|
ssi = list(head.stride).index(16) if autobalance else 0 # stride 16 index |
|
BCEcls, BCEobj, gr, autobalance = BCEcls, BCEobj, 1.0, autobalance |
|
|
|
def single_mask_loss(gt_mask, pred, proto, xyxy, area): |
|
# Mask loss for one image |
|
pred_mask = (pred @ proto.view(head.nm, -1)).view(-1, *proto.shape[1:]) # (n,32) @ (32,80,80) -> (n,80,80) |
|
loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction="none") |
|
return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean() |
|
|
|
def build_targets(p, targets): |
|
# Build targets for compute_loss(), input targets(image,class,x,y,w,h) |
|
nonlocal head |
|
na, nt = head.na, targets.shape[0] # number of anchors, targets |
|
tcls, tbox, indices, anch, tidxs, xywhn = [], [], [], [], [], [] |
|
gain = torch.ones(8, device=self.device) # normalized to gridspace gain |
|
ai = torch.arange(na, device=self.device).float().view(na, 1).repeat(1, |
|
nt) # same as .repeat_interleave(nt) |
|
if self.args.overlap_mask: |
|
batch = p[0].shape[0] |
|
ti = [] |
|
for i in range(batch): |
|
num = (targets[:, 0] == i).sum() # find number of targets of each image |
|
ti.append(torch.arange(num, device=self.device).float().view(1, num).repeat(na, 1) + 1) # (na, num) |
|
ti = torch.cat(ti, 1) # (na, nt) |
|
else: |
|
ti = torch.arange(nt, device=self.device).float().view(1, nt).repeat(na, 1) |
|
targets = torch.cat((targets.repeat(na, 1, 1), ai[..., None], ti[..., None]), 2) # append anchor indices |
|
|
|
g = 0.5 # bias |
|
off = torch.tensor( |
|
[ |
|
[0, 0], |
|
[1, 0], |
|
[0, 1], |
|
[-1, 0], |
|
[0, -1], # j,k,l,m |
|
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm |
|
], |
|
device=self.device).float() * g # offsets |
|
|
|
for i in range(head.nl): |
|
anchors, shape = head.anchors[i], p[i].shape |
|
gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]] # xyxy gain |
|
|
|
# Match targets to anchors |
|
t = targets * gain # shape(3,n,7) |
|
if nt: |
|
# Matches |
|
r = t[..., 4:6] / anchors[:, None] # wh ratio |
|
j = torch.max(r, 1 / r).max(2)[0] < self.args.anchor_t # compare |
|
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2)) |
|
t = t[j] # filter |
|
|
|
# Offsets |
|
gxy = t[:, 2:4] # grid xy |
|
gxi = gain[[2, 3]] - gxy # inverse |
|
j, k = ((gxy % 1 < g) & (gxy > 1)).T |
|
l, m = ((gxi % 1 < g) & (gxi > 1)).T |
|
j = torch.stack((torch.ones_like(j), j, k, l, m)) |
|
t = t.repeat((5, 1, 1))[j] |
|
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] |
|
else: |
|
t = targets[0] |
|
offsets = 0 |
|
|
|
# Define |
|
bc, gxy, gwh, at = t.chunk(4, 1) # (image, class), grid xy, grid wh, anchors |
|
(a, tidx), (b, c) = at.long().T, bc.long().T # anchors, image, class |
|
gij = (gxy - offsets).long() |
|
gi, gj = gij.T # grid indices |
|
|
|
# Append |
|
indices.append((b, a, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1))) # image, anchor, grid |
|
tbox.append(torch.cat((gxy - gij, gwh), 1)) # box |
|
anch.append(anchors[a]) # anchors |
|
tcls.append(c) # class |
|
tidxs.append(tidx) |
|
xywhn.append(torch.cat((gxy, gwh), 1) / gain[2:6]) # xywh normalized |
|
|
|
return tcls, tbox, indices, anch, tidxs, xywhn |
|
|
|
if len(preds) == 2: # eval |
|
p, proto, = preds |
|
else: # len(3) train |
|
_, proto, p = preds |
|
|
|
targets = torch.cat((batch["batch_idx"].view(-1, 1), batch["cls"].view(-1, 1), batch["bboxes"]), 1) |
|
masks = batch["masks"] |
|
targets, masks = targets.to(self.device), masks.to(self.device).float() |
|
|
|
bs, nm, mask_h, mask_w = proto.shape # batch size, number of masks, mask height, mask width |
|
lcls = torch.zeros(1, device=self.device) |
|
lbox = torch.zeros(1, device=self.device) |
|
lobj = torch.zeros(1, device=self.device) |
|
lseg = torch.zeros(1, device=self.device) |
|
tcls, tbox, indices, anchors, tidxs, xywhn = build_targets(p, targets) |
|
|
|
# Losses |
|
for i, pi in enumerate(p): # layer index, layer predictions |
|
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx |
|
tobj = torch.zeros(pi.shape[:4], dtype=pi.dtype, device=self.device) # target obj |
|
|
|
n = b.shape[0] # number of targets |
|
if n: |
|
pxy, pwh, _, pcls, pmask = pi[b, a, gj, gi].split((2, 2, 1, head.nc, nm), 1) # subset of predictions |
|
|
|
# Box regression |
|
pxy = pxy.sigmoid() * 2 - 0.5 |
|
pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i] |
|
pbox = torch.cat((pxy, pwh), 1) # predicted box |
|
iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze() # iou(prediction, target) |
|
lbox += (1.0 - iou).mean() # iou loss |
|
|
|
# Objectness |
|
iou = iou.detach().clamp(0).type(tobj.dtype) |
|
if sort_obj_iou: |
|
j = iou.argsort() |
|
b, a, gj, gi, iou = b[j], a[j], gj[j], gi[j], iou[j] |
|
if gr < 1: |
|
iou = (1.0 - gr) + gr * iou |
|
tobj[b, a, gj, gi] = iou # iou ratio |
|
|
|
# Classification |
|
if head.nc > 1: # cls loss (only if multiple classes) |
|
t = torch.full_like(pcls, cn, device=self.device) # targets |
|
t[range(n), tcls[i]] = cp |
|
lcls += BCEcls(pcls, t) # BCE |
|
|
|
# Mask regression |
|
if tuple(masks.shape[-2:]) != (mask_h, mask_w): # downsample |
|
masks = F.interpolate(masks[None], (mask_h, mask_w), mode="nearest")[0] |
|
marea = xywhn[i][:, 2:].prod(1) # mask width, height normalized |
|
mxyxy = xywh2xyxy(xywhn[i] * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device)) |
|
for bi in b.unique(): |
|
j = b == bi # matching index |
|
if self.args.overlap_mask: |
|
mask_gti = torch.where(masks[bi][None] == tidxs[i][j].view(-1, 1, 1), 1.0, 0.0) |
|
else: |
|
mask_gti = masks[tidxs[i]][j] |
|
lseg += single_mask_loss(mask_gti, pmask[j], proto[bi], mxyxy[j], marea[j]) |
|
else: |
|
lseg += (proto * 0).sum() |
|
|
|
obji = BCEobj(pi[..., 4], tobj) |
|
lobj += obji * balance[i] # obj loss |
|
if autobalance: |
|
balance[i] = balance[i] * 0.9999 + 0.0001 / obji.detach().item() |
|
|
|
if autobalance: |
|
balance = [x / balance[ssi] for x in balance] |
|
lbox *= self.args.box |
|
lobj *= self.args.obj |
|
lcls *= self.args.cls |
|
lseg *= self.args.box / bs |
|
|
|
loss = lbox + lobj + lcls + lseg |
|
return loss * bs, torch.cat((lbox, lseg, lobj, lcls)).detach() |
|
|
|
def label_loss_items(self, loss_items=None, prefix="train"): |
|
# We should just use named tensors here in future |
|
keys = [f"{prefix}/lbox", f"{prefix}/lseg", f"{prefix}/lobj", f"{prefix}/lcls"] |
|
return dict(zip(keys, loss_items)) if loss_items is not None else keys |
|
|
|
def progress_string(self): |
|
return ('\n' + '%11s' * 7) % \ |
|
('Epoch', 'GPU_mem', 'box_loss', 'seg_loss', 'obj_loss', 'cls_loss', 'Size') |
|
|
|
def plot_training_samples(self, batch, ni): |
|
images = batch["img"] |
|
masks = batch["masks"] |
|
cls = batch["cls"].squeeze(-1) |
|
bboxes = batch["bboxes"] |
|
paths = batch["im_file"] |
|
batch_idx = batch["batch_idx"] |
|
plot_images(images, batch_idx, cls, bboxes, masks, paths=paths, fname=self.save_dir / f"train_batch{ni}.jpg") |
|
|
|
def plot_metrics(self): |
|
plot_results(file=self.csv, segment=True) # save results.png |
|
|
|
|
|
@hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name) |
|
def train(cfg): |
|
cfg.model = cfg.model or "models/yolov5n-seg.yaml" |
|
cfg.data = cfg.data or "coco128-seg.yaml" # or yolo.ClassificationDataset("mnist") |
|
trainer = SegmentationTrainer(cfg) |
|
trainer.train() |
|
|
|
|
|
if __name__ == "__main__": |
|
""" |
|
CLI usage: |
|
python ultralytics/yolo/v8/segment/train.py cfg=yolov5n-seg.yaml data=coco128-segments epochs=100 img_size=640 |
|
|
|
TODO: |
|
Direct cli support, i.e, yolov8 classify_train args.epochs 10 |
|
""" |
|
train()
|
|
|