You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
461 lines
18 KiB
461 lines
18 KiB
# Ultralytics YOLO 🚀, GPL-3.0 license |
|
""" |
|
Common modules |
|
""" |
|
|
|
import math |
|
import warnings |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from ultralytics.yolo.utils.tal import dist2bbox, make_anchors |
|
|
|
|
|
def autopad(k, p=None, d=1): # kernel, padding, dilation |
|
# Pad to 'same' shape outputs |
|
if d > 1: |
|
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size |
|
if p is None: |
|
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad |
|
return p |
|
|
|
|
|
class Conv(nn.Module): |
|
# Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation) |
|
default_act = nn.SiLU() # default activation |
|
|
|
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True): |
|
super().__init__() |
|
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False) |
|
self.bn = nn.BatchNorm2d(c2) |
|
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity() |
|
|
|
def forward(self, x): |
|
return self.act(self.bn(self.conv(x))) |
|
|
|
def forward_fuse(self, x): |
|
return self.act(self.conv(x)) |
|
|
|
|
|
class DWConv(Conv): |
|
# Depth-wise convolution |
|
def __init__(self, c1, c2, k=1, s=1, d=1, act=True): # ch_in, ch_out, kernel, stride, dilation, activation |
|
super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act) |
|
|
|
|
|
class DWConvTranspose2d(nn.ConvTranspose2d): |
|
# Depth-wise transpose convolution |
|
def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0): # ch_in, ch_out, kernel, stride, padding, padding_out |
|
super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2)) |
|
|
|
|
|
class ConvTranspose(nn.Module): |
|
# Convolution transpose 2d layer |
|
default_act = nn.SiLU() # default activation |
|
|
|
def __init__(self, c1, c2, k=2, s=2, p=0, bn=True, act=True): |
|
super().__init__() |
|
self.conv_transpose = nn.ConvTranspose2d(c1, c2, k, s, p, bias=not bn) |
|
self.bn = nn.BatchNorm2d(c2) if bn else nn.Identity() |
|
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity() |
|
|
|
def forward(self, x): |
|
return self.act(self.bn(self.conv_transpose(x))) |
|
|
|
|
|
class DFL(nn.Module): |
|
# Integral module of Distribution Focal Loss (DFL) proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391 |
|
def __init__(self, c1=16): |
|
super().__init__() |
|
self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False) |
|
x = torch.arange(c1, dtype=torch.float) |
|
self.conv.weight.data[:] = nn.Parameter(x.view(1, c1, 1, 1)) |
|
self.c1 = c1 |
|
|
|
def forward(self, x): |
|
b, c, a = x.shape # batch, channels, anchors |
|
return self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(b, 4, a) |
|
# return self.conv(x.view(b, self.c1, 4, a).softmax(1)).view(b, 4, a) |
|
|
|
|
|
class TransformerLayer(nn.Module): |
|
# Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance) |
|
def __init__(self, c, num_heads): |
|
super().__init__() |
|
self.q = nn.Linear(c, c, bias=False) |
|
self.k = nn.Linear(c, c, bias=False) |
|
self.v = nn.Linear(c, c, bias=False) |
|
self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads) |
|
self.fc1 = nn.Linear(c, c, bias=False) |
|
self.fc2 = nn.Linear(c, c, bias=False) |
|
|
|
def forward(self, x): |
|
x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x |
|
x = self.fc2(self.fc1(x)) + x |
|
return x |
|
|
|
|
|
class TransformerBlock(nn.Module): |
|
# Vision Transformer https://arxiv.org/abs/2010.11929 |
|
def __init__(self, c1, c2, num_heads, num_layers): |
|
super().__init__() |
|
self.conv = None |
|
if c1 != c2: |
|
self.conv = Conv(c1, c2) |
|
self.linear = nn.Linear(c2, c2) # learnable position embedding |
|
self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers))) |
|
self.c2 = c2 |
|
|
|
def forward(self, x): |
|
if self.conv is not None: |
|
x = self.conv(x) |
|
b, _, w, h = x.shape |
|
p = x.flatten(2).permute(2, 0, 1) |
|
return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h) |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
# Standard bottleneck |
|
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5): # ch_in, ch_out, shortcut, groups, kernels, expand |
|
super().__init__() |
|
c_ = int(c2 * e) # hidden channels |
|
self.cv1 = Conv(c1, c_, k[0], 1) |
|
self.cv2 = Conv(c_, c2, k[1], 1, g=g) |
|
self.add = shortcut and c1 == c2 |
|
|
|
def forward(self, x): |
|
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) |
|
|
|
|
|
class BottleneckCSP(nn.Module): |
|
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks |
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion |
|
super().__init__() |
|
c_ = int(c2 * e) # hidden channels |
|
self.cv1 = Conv(c1, c_, 1, 1) |
|
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False) |
|
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False) |
|
self.cv4 = Conv(2 * c_, c2, 1, 1) |
|
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3) |
|
self.act = nn.SiLU() |
|
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n))) |
|
|
|
def forward(self, x): |
|
y1 = self.cv3(self.m(self.cv1(x))) |
|
y2 = self.cv2(x) |
|
return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1)))) |
|
|
|
|
|
class C3(nn.Module): |
|
# CSP Bottleneck with 3 convolutions |
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion |
|
super().__init__() |
|
c_ = int(c2 * e) # hidden channels |
|
self.cv1 = Conv(c1, c_, 1, 1) |
|
self.cv2 = Conv(c1, c_, 1, 1) |
|
self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2) |
|
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n))) |
|
|
|
def forward(self, x): |
|
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1)) |
|
|
|
|
|
class C2(nn.Module): |
|
# CSP Bottleneck with 2 convolutions |
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion |
|
super().__init__() |
|
self.c = int(c2 * e) # hidden channels |
|
self.cv1 = Conv(c1, 2 * self.c, 1, 1) |
|
self.cv2 = Conv(2 * self.c, c2, 1) # optional act=FReLU(c2) |
|
# self.attention = ChannelAttention(2 * self.c) # or SpatialAttention() |
|
self.m = nn.Sequential(*(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))) |
|
|
|
def forward(self, x): |
|
a, b = self.cv1(x).split((self.c, self.c), 1) |
|
return self.cv2(torch.cat((self.m(a), b), 1)) |
|
|
|
|
|
class C2f(nn.Module): |
|
# CSP Bottleneck with 2 convolutions |
|
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion |
|
super().__init__() |
|
self.c = int(c2 * e) # hidden channels |
|
self.cv1 = Conv(c1, 2 * self.c, 1, 1) |
|
self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2) |
|
self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n)) |
|
|
|
def forward(self, x): |
|
y = list(self.cv1(x).split((self.c, self.c), 1)) |
|
y.extend(m(y[-1]) for m in self.m) |
|
return self.cv2(torch.cat(y, 1)) |
|
|
|
|
|
class ChannelAttention(nn.Module): |
|
# Channel-attention module https://github.com/open-mmlab/mmdetection/tree/v3.0.0rc1/configs/rtmdet |
|
def __init__(self, channels: int) -> None: |
|
super().__init__() |
|
self.pool = nn.AdaptiveAvgPool2d(1) |
|
self.fc = nn.Conv2d(channels, channels, 1, 1, 0, bias=True) |
|
self.act = nn.Sigmoid() |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
return x * self.act(self.fc(self.pool(x))) |
|
|
|
|
|
class SpatialAttention(nn.Module): |
|
# Spatial-attention module |
|
def __init__(self, kernel_size=7): |
|
super().__init__() |
|
assert kernel_size in (3, 7), 'kernel size must be 3 or 7' |
|
padding = 3 if kernel_size == 7 else 1 |
|
self.cv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False) |
|
self.act = nn.Sigmoid() |
|
|
|
def forward(self, x): |
|
return x * self.act(self.cv1(torch.cat([torch.mean(x, 1, keepdim=True), torch.max(x, 1, keepdim=True)[0]], 1))) |
|
|
|
|
|
class CBAM(nn.Module): |
|
# Convolutional Block Attention Module |
|
def __init__(self, c1, kernel_size=7): # ch_in, kernels |
|
super().__init__() |
|
self.channel_attention = ChannelAttention(c1) |
|
self.spatial_attention = SpatialAttention(kernel_size) |
|
|
|
def forward(self, x): |
|
return self.spatial_attention(self.channel_attention(x)) |
|
|
|
|
|
class C1(nn.Module): |
|
# CSP Bottleneck with 1 convolution |
|
def __init__(self, c1, c2, n=1): # ch_in, ch_out, number |
|
super().__init__() |
|
self.cv1 = Conv(c1, c2, 1, 1) |
|
self.m = nn.Sequential(*(Conv(c2, c2, 3) for _ in range(n))) |
|
|
|
def forward(self, x): |
|
y = self.cv1(x) |
|
return self.m(y) + y |
|
|
|
|
|
class C3x(C3): |
|
# C3 module with cross-convolutions |
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): |
|
super().__init__(c1, c2, n, shortcut, g, e) |
|
self.c_ = int(c2 * e) |
|
self.m = nn.Sequential(*(Bottleneck(self.c_, self.c_, shortcut, g, k=((1, 3), (3, 1)), e=1) for _ in range(n))) |
|
|
|
|
|
class C3TR(C3): |
|
# C3 module with TransformerBlock() |
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): |
|
super().__init__(c1, c2, n, shortcut, g, e) |
|
c_ = int(c2 * e) |
|
self.m = TransformerBlock(c_, c_, 4, n) |
|
|
|
|
|
class C3Ghost(C3): |
|
# C3 module with GhostBottleneck() |
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): |
|
super().__init__(c1, c2, n, shortcut, g, e) |
|
c_ = int(c2 * e) # hidden channels |
|
self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n))) |
|
|
|
|
|
class SPP(nn.Module): |
|
# Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729 |
|
def __init__(self, c1, c2, k=(5, 9, 13)): |
|
super().__init__() |
|
c_ = c1 // 2 # hidden channels |
|
self.cv1 = Conv(c1, c_, 1, 1) |
|
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1) |
|
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k]) |
|
|
|
def forward(self, x): |
|
x = self.cv1(x) |
|
with warnings.catch_warnings(): |
|
warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning |
|
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1)) |
|
|
|
|
|
class SPPF(nn.Module): |
|
# Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher |
|
def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13)) |
|
super().__init__() |
|
c_ = c1 // 2 # hidden channels |
|
self.cv1 = Conv(c1, c_, 1, 1) |
|
self.cv2 = Conv(c_ * 4, c2, 1, 1) |
|
self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2) |
|
|
|
def forward(self, x): |
|
x = self.cv1(x) |
|
with warnings.catch_warnings(): |
|
warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning |
|
y1 = self.m(x) |
|
y2 = self.m(y1) |
|
return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1)) |
|
|
|
|
|
class Focus(nn.Module): |
|
# Focus wh information into c-space |
|
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups |
|
super().__init__() |
|
self.conv = Conv(c1 * 4, c2, k, s, p, g, act=act) |
|
# self.contract = Contract(gain=2) |
|
|
|
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2) |
|
return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1)) |
|
# return self.conv(self.contract(x)) |
|
|
|
|
|
class GhostConv(nn.Module): |
|
# Ghost Convolution https://github.com/huawei-noah/ghostnet |
|
def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups |
|
super().__init__() |
|
c_ = c2 // 2 # hidden channels |
|
self.cv1 = Conv(c1, c_, k, s, None, g, act=act) |
|
self.cv2 = Conv(c_, c_, 5, 1, None, c_, act=act) |
|
|
|
def forward(self, x): |
|
y = self.cv1(x) |
|
return torch.cat((y, self.cv2(y)), 1) |
|
|
|
|
|
class GhostBottleneck(nn.Module): |
|
# Ghost Bottleneck https://github.com/huawei-noah/ghostnet |
|
def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride |
|
super().__init__() |
|
c_ = c2 // 2 |
|
self.conv = nn.Sequential( |
|
GhostConv(c1, c_, 1, 1), # pw |
|
DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw |
|
GhostConv(c_, c2, 1, 1, act=False)) # pw-linear |
|
self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1, |
|
act=False)) if s == 2 else nn.Identity() |
|
|
|
def forward(self, x): |
|
return self.conv(x) + self.shortcut(x) |
|
|
|
|
|
class Concat(nn.Module): |
|
# Concatenate a list of tensors along dimension |
|
def __init__(self, dimension=1): |
|
super().__init__() |
|
self.d = dimension |
|
|
|
def forward(self, x): |
|
return torch.cat(x, self.d) |
|
|
|
|
|
class Proto(nn.Module): |
|
# YOLOv8 mask Proto module for segmentation models |
|
def __init__(self, c1, c_=256, c2=32): # ch_in, number of protos, number of masks |
|
super().__init__() |
|
self.cv1 = Conv(c1, c_, k=3) |
|
self.upsample = nn.ConvTranspose2d(c_, c_, 2, 2, 0, bias=True) # nn.Upsample(scale_factor=2, mode='nearest') |
|
self.cv2 = Conv(c_, c_, k=3) |
|
self.cv3 = Conv(c_, c2) |
|
|
|
def forward(self, x): |
|
return self.cv3(self.cv2(self.upsample(self.cv1(x)))) |
|
|
|
|
|
class Ensemble(nn.ModuleList): |
|
# Ensemble of models |
|
def __init__(self): |
|
super().__init__() |
|
|
|
def forward(self, x, augment=False, profile=False, visualize=False): |
|
y = [module(x, augment, profile, visualize)[0] for module in self] |
|
# y = torch.stack(y).max(0)[0] # max ensemble |
|
# y = torch.stack(y).mean(0) # mean ensemble |
|
y = torch.cat(y, 1) # nms ensemble |
|
return y, None # inference, train output |
|
|
|
|
|
# heads |
|
class Detect(nn.Module): |
|
# YOLOv8 Detect head for detection models |
|
dynamic = False # force grid reconstruction |
|
export = False # export mode |
|
shape = None |
|
anchors = torch.empty(0) # init |
|
strides = torch.empty(0) # init |
|
|
|
def __init__(self, nc=80, ch=()): # detection layer |
|
super().__init__() |
|
self.nc = nc # number of classes |
|
self.nl = len(ch) # number of detection layers |
|
self.reg_max = 16 # DFL channels (ch[0] // 16 to scale 4/8/12/16/20 for n/s/m/l/x) |
|
self.no = nc + self.reg_max * 4 # number of outputs per anchor |
|
self.stride = torch.zeros(self.nl) # strides computed during build |
|
|
|
c2, c3 = max((16, ch[0] // 4, self.reg_max * 4)), max(ch[0], self.nc) # channels |
|
self.cv2 = nn.ModuleList( |
|
nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch) |
|
self.cv3 = nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch) |
|
self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity() |
|
|
|
def forward(self, x): |
|
shape = x[0].shape # BCHW |
|
for i in range(self.nl): |
|
x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1) |
|
if self.training: |
|
return x |
|
elif self.dynamic or self.shape != shape: |
|
self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5)) |
|
self.shape = shape |
|
|
|
box, cls = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2).split((self.reg_max * 4, self.nc), 1) |
|
dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides |
|
y = torch.cat((dbox, cls.sigmoid()), 1) |
|
return y if self.export else (y, x) |
|
|
|
def bias_init(self): |
|
# Initialize Detect() biases, WARNING: requires stride availability |
|
m = self # self.model[-1] # Detect() module |
|
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1 |
|
# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency |
|
for a, b, s in zip(m.cv2, m.cv3, m.stride): # from |
|
a[-1].bias.data[:] = 1.0 # box |
|
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (.01 objects, 80 classes, 640 img) |
|
|
|
|
|
class Segment(Detect): |
|
# YOLOv8 Segment head for segmentation models |
|
def __init__(self, nc=80, nm=32, npr=256, ch=()): |
|
super().__init__(nc, ch) |
|
self.nm = nm # number of masks |
|
self.npr = npr # number of protos |
|
self.proto = Proto(ch[0], self.npr, self.nm) # protos |
|
self.detect = Detect.forward |
|
|
|
c4 = max(ch[0] // 4, self.nm) |
|
self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch) |
|
|
|
def forward(self, x): |
|
p = self.proto(x[0]) # mask protos |
|
bs = p.shape[0] # batch size |
|
|
|
mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2) # mask coefficients |
|
x = self.detect(self, x) |
|
if self.training: |
|
return x, mc, p |
|
return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p)) |
|
|
|
|
|
class Classify(nn.Module): |
|
# YOLOv8 classification head, i.e. x(b,c1,20,20) to x(b,c2) |
|
def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups |
|
super().__init__() |
|
c_ = 1280 # efficientnet_b0 size |
|
self.conv = Conv(c1, c_, k, s, autopad(k, p), g) |
|
self.pool = nn.AdaptiveAvgPool2d(1) # to x(b,c_,1,1) |
|
self.drop = nn.Dropout(p=0.0, inplace=True) |
|
self.linear = nn.Linear(c_, c2) # to x(b,c2) |
|
|
|
def forward(self, x): |
|
if isinstance(x, list): |
|
x = torch.cat(x, 1) |
|
return self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))
|
|
|