|
|
import subprocess |
|
|
import time |
|
|
from pathlib import Path |
|
|
|
|
|
import hydra |
|
|
import torch |
|
|
import torchvision |
|
|
from val import ClassificationValidator |
|
|
|
|
|
from ultralytics.yolo import BaseTrainer, utils, v8 |
|
|
from ultralytics.yolo.data import build_classification_dataloader |
|
|
from ultralytics.yolo.engine.trainer import CONFIG_PATH_ABS, DEFAULT_CONFIG |
|
|
|
|
|
|
|
|
# BaseTrainer python usage |
|
|
class ClassificationTrainer(BaseTrainer): |
|
|
|
|
|
def get_dataset(self): |
|
|
# temporary solution. Replace with new ultralytics.yolo.ClassificationDataset module |
|
|
data = Path("datasets") / self.data |
|
|
with utils.torch_distributed_zero_first(utils.LOCAL_RANK), utils.WorkingDirectory(Path.cwd()): |
|
|
data_dir = data if data.is_dir() else (Path.cwd() / data) |
|
|
if not data_dir.is_dir(): |
|
|
self.console.info(f'\nDataset not found ⚠️, missing path {data_dir}, attempting download...') |
|
|
t = time.time() |
|
|
if str(data) == 'imagenet': |
|
|
subprocess.run(f"bash {v8.ROOT / 'data/scripts/get_imagenet.sh'}", shell=True, check=True) |
|
|
else: |
|
|
url = f'https://github.com/ultralytics/yolov5/releases/download/v1.0/{self.data}.zip' |
|
|
utils.download(url, dir=data_dir.parent) |
|
|
# TODO: add colorstr |
|
|
s = f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {'bold', data_dir}\n" |
|
|
self.console.info(s) |
|
|
train_set = data_dir / "train" |
|
|
test_set = data_dir / 'test' if (data_dir / 'test').exists() else data_dir / 'val' # data/test or data/val |
|
|
|
|
|
return train_set, test_set |
|
|
|
|
|
def get_dataloader(self, dataset, batch_size=None, rank=0): |
|
|
return build_classification_dataloader(path=dataset, batch_size=self.train.batch_size, rank=rank) |
|
|
|
|
|
def get_model(self): |
|
|
# temp. minimal. only supports torchvision models |
|
|
if self.model in torchvision.models.__dict__: # TorchVision models i.e. resnet50, efficientnet_b0 |
|
|
model = torchvision.models.__dict__[self.model](weights='IMAGENET1K_V1' if self.train.pretrained else None) |
|
|
else: |
|
|
raise ModuleNotFoundError(f'--model {self.model} not found.') |
|
|
for m in model.modules(): |
|
|
if not self.train.pretrained and hasattr(m, 'reset_parameters'): |
|
|
m.reset_parameters() |
|
|
for p in model.parameters(): |
|
|
p.requires_grad = True # for training |
|
|
|
|
|
return model |
|
|
|
|
|
def get_validator(self): |
|
|
return ClassificationValidator(self.test_loader, self.device, logger=self.console) # validator |
|
|
|
|
|
def criterion(self, preds, targets): |
|
|
return torch.nn.functional.cross_entropy(preds, targets) |
|
|
|
|
|
|
|
|
@hydra.main(version_base=None, config_path=CONFIG_PATH_ABS, config_name=str(DEFAULT_CONFIG).split(".")[0]) |
|
|
def train(cfg): |
|
|
cfg.model = cfg.model or "squeezenet1_0" |
|
|
cfg.data = cfg.data or "imagenette160" # or yolo.ClassificationDataset("mnist") |
|
|
trainer = ClassificationTrainer(cfg) |
|
|
trainer.run() |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
""" |
|
|
CLI usage: |
|
|
python ../path/to/train.py train.epochs=10 train.project="name" hyps.lr0=0.1 |
|
|
|
|
|
TODO: |
|
|
Direct cli support, i.e, yolov8 classify_train train.epochs 10 |
|
|
""" |
|
|
train()
|
|
|
|