You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
170 lines
6.4 KiB
170 lines
6.4 KiB
# Ultralytics YOLO 🚀, AGPL-3.0 license |
|
|
|
import os |
|
import random |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
from torch.utils.data import dataloader, distributed |
|
|
|
from ultralytics.yolo.data.dataloaders.stream_loaders import (LOADERS, LoadImages, LoadPilAndNumpy, LoadScreenshots, |
|
LoadStreams, LoadTensor, SourceTypes, autocast_list) |
|
from ultralytics.yolo.data.utils import IMG_FORMATS, VID_FORMATS |
|
from ultralytics.yolo.utils.checks import check_file |
|
|
|
from ..utils import RANK, colorstr |
|
from .dataset import YOLODataset |
|
from .utils import PIN_MEMORY |
|
|
|
|
|
class InfiniteDataLoader(dataloader.DataLoader): |
|
"""Dataloader that reuses workers. Uses same syntax as vanilla DataLoader.""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
"""Dataloader that infinitely recycles workers, inherits from DataLoader.""" |
|
super().__init__(*args, **kwargs) |
|
object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler)) |
|
self.iterator = super().__iter__() |
|
|
|
def __len__(self): |
|
"""Returns the length of the batch sampler's sampler.""" |
|
return len(self.batch_sampler.sampler) |
|
|
|
def __iter__(self): |
|
"""Creates a sampler that repeats indefinitely.""" |
|
for _ in range(len(self)): |
|
yield next(self.iterator) |
|
|
|
def reset(self): |
|
"""Reset iterator. |
|
This is useful when we want to modify settings of dataset while training. |
|
""" |
|
self.iterator = self._get_iterator() |
|
|
|
|
|
class _RepeatSampler: |
|
""" |
|
Sampler that repeats forever. |
|
|
|
Args: |
|
sampler (Dataset.sampler): The sampler to repeat. |
|
""" |
|
|
|
def __init__(self, sampler): |
|
"""Initializes an object that repeats a given sampler indefinitely.""" |
|
self.sampler = sampler |
|
|
|
def __iter__(self): |
|
"""Iterates over the 'sampler' and yields its contents.""" |
|
while True: |
|
yield from iter(self.sampler) |
|
|
|
|
|
def seed_worker(worker_id): # noqa |
|
# Set dataloader worker seed https://pytorch.org/docs/stable/notes/randomness.html#dataloader |
|
worker_seed = torch.initial_seed() % 2 ** 32 |
|
np.random.seed(worker_seed) |
|
random.seed(worker_seed) |
|
|
|
|
|
def build_yolo_dataset(cfg, img_path, batch, data, mode='train', rect=False, stride=32): |
|
"""Build YOLO Dataset""" |
|
return YOLODataset( |
|
img_path=img_path, |
|
imgsz=cfg.imgsz, |
|
batch_size=batch, |
|
augment=mode == 'train', # augmentation |
|
hyp=cfg, # TODO: probably add a get_hyps_from_cfg function |
|
rect=cfg.rect or rect, # rectangular batches |
|
cache=cfg.cache or None, |
|
single_cls=cfg.single_cls or False, |
|
stride=int(stride), |
|
pad=0.0 if mode == 'train' else 0.5, |
|
prefix=colorstr(f'{mode}: '), |
|
use_segments=cfg.task == 'segment', |
|
use_keypoints=cfg.task == 'pose', |
|
classes=cfg.classes, |
|
data=data, |
|
fraction=cfg.fraction if mode == 'train' else 1.0) |
|
|
|
|
|
def build_dataloader(dataset, batch, workers, shuffle=True, rank=-1): |
|
"""Return an InfiniteDataLoader or DataLoader for training or validation set.""" |
|
batch = min(batch, len(dataset)) |
|
nd = torch.cuda.device_count() # number of CUDA devices |
|
nw = min([os.cpu_count() // max(nd, 1), batch if batch > 1 else 0, workers]) # number of workers |
|
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle) |
|
generator = torch.Generator() |
|
generator.manual_seed(6148914691236517205 + RANK) |
|
return InfiniteDataLoader(dataset=dataset, |
|
batch_size=batch, |
|
shuffle=shuffle and sampler is None, |
|
num_workers=nw, |
|
sampler=sampler, |
|
pin_memory=PIN_MEMORY, |
|
collate_fn=getattr(dataset, 'collate_fn', None), |
|
worker_init_fn=seed_worker, |
|
generator=generator) |
|
|
|
|
|
def check_source(source): |
|
"""Check source type and return corresponding flag values.""" |
|
webcam, screenshot, from_img, in_memory, tensor = False, False, False, False, False |
|
if isinstance(source, (str, int, Path)): # int for local usb camera |
|
source = str(source) |
|
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS) |
|
is_url = source.lower().startswith(('https://', 'http://', 'rtsp://', 'rtmp://')) |
|
webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file) |
|
screenshot = source.lower() == 'screen' |
|
if is_url and is_file: |
|
source = check_file(source) # download |
|
elif isinstance(source, tuple(LOADERS)): |
|
in_memory = True |
|
elif isinstance(source, (list, tuple)): |
|
source = autocast_list(source) # convert all list elements to PIL or np arrays |
|
from_img = True |
|
elif isinstance(source, (Image.Image, np.ndarray)): |
|
from_img = True |
|
elif isinstance(source, torch.Tensor): |
|
tensor = True |
|
else: |
|
raise TypeError('Unsupported image type. For supported types see https://docs.ultralytics.com/modes/predict') |
|
|
|
return source, webcam, screenshot, from_img, in_memory, tensor |
|
|
|
|
|
def load_inference_source(source=None, imgsz=640, vid_stride=1): |
|
""" |
|
Loads an inference source for object detection and applies necessary transformations. |
|
|
|
Args: |
|
source (str, Path, Tensor, PIL.Image, np.ndarray): The input source for inference. |
|
imgsz (int, optional): The size of the image for inference. Default is 640. |
|
vid_stride (int, optional): The frame interval for video sources. Default is 1. |
|
|
|
Returns: |
|
dataset (Dataset): A dataset object for the specified input source. |
|
""" |
|
source, webcam, screenshot, from_img, in_memory, tensor = check_source(source) |
|
source_type = source.source_type if in_memory else SourceTypes(webcam, screenshot, from_img, tensor) |
|
|
|
# Dataloader |
|
if tensor: |
|
dataset = LoadTensor(source) |
|
elif in_memory: |
|
dataset = source |
|
elif webcam: |
|
dataset = LoadStreams(source, imgsz=imgsz, vid_stride=vid_stride) |
|
elif screenshot: |
|
dataset = LoadScreenshots(source, imgsz=imgsz) |
|
elif from_img: |
|
dataset = LoadPilAndNumpy(source, imgsz=imgsz) |
|
else: |
|
dataset = LoadImages(source, imgsz=imgsz, vid_stride=vid_stride) |
|
|
|
# Attach source types to the dataset |
|
setattr(dataset, 'source_type', source_type) |
|
|
|
return dataset
|
|
|