You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

53 lines
2.3 KiB

from pathlib import Path
from ultralytics import YOLO
from ultralytics.vit.sam import PromptPredictor, build_sam
from ultralytics.yolo.utils.torch_utils import select_device
def auto_annotate(data, det_model='yolov8x.pt', sam_model='sam_b.pt', device='', output_dir=None):
"""
Automatically annotates images using a YOLO object detection model and a SAM segmentation model.
Args:
data (str): Path to a folder containing images to be annotated.
det_model (str, optional): Pre-trained YOLO detection model. Defaults to 'yolov8x.pt'.
sam_model (str, optional): Pre-trained SAM segmentation model. Defaults to 'sam_b.pt'.
device (str, optional): Device to run the models on. Defaults to an empty string (CPU or GPU, if available).
output_dir (str, None, optional): Directory to save the annotated results.
Defaults to a 'labels' folder in the same directory as 'data'.
"""
device = select_device(device)
det_model = YOLO(det_model)
sam_model = build_sam(sam_model)
det_model.to(device)
sam_model.to(device)
if not output_dir:
output_dir = Path(str(data)).parent / 'labels'
Path(output_dir).mkdir(exist_ok=True, parents=True)
prompt_predictor = PromptPredictor(sam_model)
det_results = det_model(data, stream=True)
for result in det_results:
boxes = result.boxes.xyxy # Boxes object for bbox outputs
class_ids = result.boxes.cls.int().tolist() # noqa
if len(class_ids):
prompt_predictor.set_image(result.orig_img)
masks, _, _ = prompt_predictor.predict_torch(
point_coords=None,
point_labels=None,
boxes=prompt_predictor.transform.apply_boxes_torch(boxes, result.orig_shape[:2]),
multimask_output=False,
)
result.update(masks=masks.squeeze(1))
segments = result.masks.xyn # noqa
with open(str(Path(output_dir) / Path(result.path).stem) + '.txt', 'w') as f:
for i in range(len(segments)):
s = segments[i]
if len(s) == 0:
continue
segment = map(str, segments[i].reshape(-1).tolist())
f.write(f'{class_ids[i]} ' + ' '.join(segment) + '\n')