|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license |
|
|
"""Functions for estimating the best YOLO batch size to use a fraction of the available CUDA memory in PyTorch.""" |
|
|
|
|
|
from copy import deepcopy |
|
|
|
|
|
import numpy as np |
|
|
import torch |
|
|
|
|
|
from ultralytics.utils import DEFAULT_CFG, LOGGER, colorstr |
|
|
from ultralytics.utils.torch_utils import profile |
|
|
|
|
|
|
|
|
def check_train_batch_size(model, imgsz=640, amp=True): |
|
|
""" |
|
|
Check YOLO training batch size using the autobatch() function. |
|
|
|
|
|
Args: |
|
|
model (torch.nn.Module): YOLO model to check batch size for. |
|
|
imgsz (int): Image size used for training. |
|
|
amp (bool): If True, use automatic mixed precision (AMP) for training. |
|
|
|
|
|
Returns: |
|
|
(int): Optimal batch size computed using the autobatch() function. |
|
|
""" |
|
|
|
|
|
with torch.cuda.amp.autocast(amp): |
|
|
return autobatch(deepcopy(model).train(), imgsz) # compute optimal batch size |
|
|
|
|
|
|
|
|
def autobatch(model, imgsz=640, fraction=0.60, batch_size=DEFAULT_CFG.batch): |
|
|
""" |
|
|
Automatically estimate the best YOLO batch size to use a fraction of the available CUDA memory. |
|
|
|
|
|
Args: |
|
|
model (torch.nn.module): YOLO model to compute batch size for. |
|
|
imgsz (int, optional): The image size used as input for the YOLO model. Defaults to 640. |
|
|
fraction (float, optional): The fraction of available CUDA memory to use. Defaults to 0.60. |
|
|
batch_size (int, optional): The default batch size to use if an error is detected. Defaults to 16. |
|
|
|
|
|
Returns: |
|
|
(int): The optimal batch size. |
|
|
""" |
|
|
|
|
|
# Check device |
|
|
prefix = colorstr("AutoBatch: ") |
|
|
LOGGER.info(f"{prefix}Computing optimal batch size for imgsz={imgsz}") |
|
|
device = next(model.parameters()).device # get model device |
|
|
if device.type == "cpu": |
|
|
LOGGER.info(f"{prefix}CUDA not detected, using default CPU batch-size {batch_size}") |
|
|
return batch_size |
|
|
if torch.backends.cudnn.benchmark: |
|
|
LOGGER.info(f"{prefix} ⚠️ Requires torch.backends.cudnn.benchmark=False, using default batch-size {batch_size}") |
|
|
return batch_size |
|
|
|
|
|
# Inspect CUDA memory |
|
|
gb = 1 << 30 # bytes to GiB (1024 ** 3) |
|
|
d = str(device).upper() # 'CUDA:0' |
|
|
properties = torch.cuda.get_device_properties(device) # device properties |
|
|
t = properties.total_memory / gb # GiB total |
|
|
r = torch.cuda.memory_reserved(device) / gb # GiB reserved |
|
|
a = torch.cuda.memory_allocated(device) / gb # GiB allocated |
|
|
f = t - (r + a) # GiB free |
|
|
LOGGER.info(f"{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free") |
|
|
|
|
|
# Profile batch sizes |
|
|
batch_sizes = [1, 2, 4, 8, 16] |
|
|
try: |
|
|
img = [torch.empty(b, 3, imgsz, imgsz) for b in batch_sizes] |
|
|
results = profile(img, model, n=3, device=device) |
|
|
|
|
|
# Fit a solution |
|
|
y = [x[2] for x in results if x] # memory [2] |
|
|
p = np.polyfit(batch_sizes[: len(y)], y, deg=1) # first degree polynomial fit |
|
|
b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size) |
|
|
if None in results: # some sizes failed |
|
|
i = results.index(None) # first fail index |
|
|
if b >= batch_sizes[i]: # y intercept above failure point |
|
|
b = batch_sizes[max(i - 1, 0)] # select prior safe point |
|
|
if b < 1 or b > 1024: # b outside of safe range |
|
|
b = batch_size |
|
|
LOGGER.info(f"{prefix}WARNING ⚠️ CUDA anomaly detected, using default batch-size {batch_size}.") |
|
|
|
|
|
fraction = (np.polyval(p, b) + r + a) / t # actual fraction predicted |
|
|
LOGGER.info(f"{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%) ✅") |
|
|
return b |
|
|
except Exception as e: |
|
|
LOGGER.warning(f"{prefix}WARNING ⚠️ error detected: {e}, using default batch-size {batch_size}.") |
|
|
return batch_size
|
|
|
|