You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
130 lines
4.9 KiB
130 lines
4.9 KiB
# Ultralytics YOLO 🚀, AGPL-3.0 license |
|
|
|
import numpy as np |
|
import scipy |
|
from scipy.spatial.distance import cdist |
|
|
|
from ultralytics.utils.metrics import bbox_ioa |
|
|
|
try: |
|
import lap # for linear_assignment |
|
|
|
assert lap.__version__ # verify package is not directory |
|
except (ImportError, AssertionError, AttributeError): |
|
from ultralytics.utils.checks import check_requirements |
|
|
|
check_requirements("lapx>=0.5.2") # update to lap package from https://github.com/rathaROG/lapx |
|
import lap |
|
|
|
|
|
def linear_assignment(cost_matrix: np.ndarray, thresh: float, use_lap: bool = True) -> tuple: |
|
""" |
|
Perform linear assignment using scipy or lap.lapjv. |
|
|
|
Args: |
|
cost_matrix (np.ndarray): The matrix containing cost values for assignments. |
|
thresh (float): Threshold for considering an assignment valid. |
|
use_lap (bool, optional): Whether to use lap.lapjv. Defaults to True. |
|
|
|
Returns: |
|
Tuple with: |
|
- matched indices |
|
- unmatched indices from 'a' |
|
- unmatched indices from 'b' |
|
""" |
|
|
|
if cost_matrix.size == 0: |
|
return np.empty((0, 2), dtype=int), tuple(range(cost_matrix.shape[0])), tuple(range(cost_matrix.shape[1])) |
|
|
|
if use_lap: |
|
# Use lap.lapjv |
|
# https://github.com/gatagat/lap |
|
_, x, y = lap.lapjv(cost_matrix, extend_cost=True, cost_limit=thresh) |
|
matches = [[ix, mx] for ix, mx in enumerate(x) if mx >= 0] |
|
unmatched_a = np.where(x < 0)[0] |
|
unmatched_b = np.where(y < 0)[0] |
|
else: |
|
# Use scipy.optimize.linear_sum_assignment |
|
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html |
|
x, y = scipy.optimize.linear_sum_assignment(cost_matrix) # row x, col y |
|
matches = np.asarray([[x[i], y[i]] for i in range(len(x)) if cost_matrix[x[i], y[i]] <= thresh]) |
|
if len(matches) == 0: |
|
unmatched_a = list(np.arange(cost_matrix.shape[0])) |
|
unmatched_b = list(np.arange(cost_matrix.shape[1])) |
|
else: |
|
unmatched_a = list(set(np.arange(cost_matrix.shape[0])) - set(matches[:, 0])) |
|
unmatched_b = list(set(np.arange(cost_matrix.shape[1])) - set(matches[:, 1])) |
|
|
|
return matches, unmatched_a, unmatched_b |
|
|
|
|
|
def iou_distance(atracks: list, btracks: list) -> np.ndarray: |
|
""" |
|
Compute cost based on Intersection over Union (IoU) between tracks. |
|
|
|
Args: |
|
atracks (list[STrack] | list[np.ndarray]): List of tracks 'a' or bounding boxes. |
|
btracks (list[STrack] | list[np.ndarray]): List of tracks 'b' or bounding boxes. |
|
|
|
Returns: |
|
(np.ndarray): Cost matrix computed based on IoU. |
|
""" |
|
|
|
if atracks and isinstance(atracks[0], np.ndarray) or btracks and isinstance(btracks[0], np.ndarray): |
|
atlbrs = atracks |
|
btlbrs = btracks |
|
else: |
|
atlbrs = [track.tlbr for track in atracks] |
|
btlbrs = [track.tlbr for track in btracks] |
|
|
|
ious = np.zeros((len(atlbrs), len(btlbrs)), dtype=np.float32) |
|
if len(atlbrs) and len(btlbrs): |
|
ious = bbox_ioa( |
|
np.ascontiguousarray(atlbrs, dtype=np.float32), np.ascontiguousarray(btlbrs, dtype=np.float32), iou=True |
|
) |
|
return 1 - ious # cost matrix |
|
|
|
|
|
def embedding_distance(tracks: list, detections: list, metric: str = "cosine") -> np.ndarray: |
|
""" |
|
Compute distance between tracks and detections based on embeddings. |
|
|
|
Args: |
|
tracks (list[STrack]): List of tracks. |
|
detections (list[BaseTrack]): List of detections. |
|
metric (str, optional): Metric for distance computation. Defaults to 'cosine'. |
|
|
|
Returns: |
|
(np.ndarray): Cost matrix computed based on embeddings. |
|
""" |
|
|
|
cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float32) |
|
if cost_matrix.size == 0: |
|
return cost_matrix |
|
det_features = np.asarray([track.curr_feat for track in detections], dtype=np.float32) |
|
# for i, track in enumerate(tracks): |
|
# cost_matrix[i, :] = np.maximum(0.0, cdist(track.smooth_feat.reshape(1,-1), det_features, metric)) |
|
track_features = np.asarray([track.smooth_feat for track in tracks], dtype=np.float32) |
|
cost_matrix = np.maximum(0.0, cdist(track_features, det_features, metric)) # Normalized features |
|
return cost_matrix |
|
|
|
|
|
def fuse_score(cost_matrix: np.ndarray, detections: list) -> np.ndarray: |
|
""" |
|
Fuses cost matrix with detection scores to produce a single similarity matrix. |
|
|
|
Args: |
|
cost_matrix (np.ndarray): The matrix containing cost values for assignments. |
|
detections (list[BaseTrack]): List of detections with scores. |
|
|
|
Returns: |
|
(np.ndarray): Fused similarity matrix. |
|
""" |
|
|
|
if cost_matrix.size == 0: |
|
return cost_matrix |
|
iou_sim = 1 - cost_matrix |
|
det_scores = np.array([det.score for det in detections]) |
|
det_scores = np.expand_dims(det_scores, axis=0).repeat(cost_matrix.shape[0], axis=0) |
|
fuse_sim = iou_sim * det_scores |
|
return 1 - fuse_sim # fuse_cost
|
|
|