|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license |
|
|
|
|
|
import glob |
|
|
import math |
|
|
import os |
|
|
import time |
|
|
from dataclasses import dataclass |
|
|
from pathlib import Path |
|
|
from threading import Thread |
|
|
from urllib.parse import urlparse |
|
|
|
|
|
import cv2 |
|
|
import numpy as np |
|
|
import requests |
|
|
import torch |
|
|
from PIL import Image |
|
|
|
|
|
from ultralytics.data.utils import IMG_FORMATS, VID_FORMATS |
|
|
from ultralytics.utils import LOGGER, is_colab, is_kaggle, ops |
|
|
from ultralytics.utils.checks import check_requirements |
|
|
|
|
|
|
|
|
@dataclass |
|
|
class SourceTypes: |
|
|
"""Class to represent various types of input sources for predictions.""" |
|
|
|
|
|
webcam: bool = False |
|
|
screenshot: bool = False |
|
|
from_img: bool = False |
|
|
tensor: bool = False |
|
|
|
|
|
|
|
|
class LoadStreams: |
|
|
""" |
|
|
Stream Loader for various types of video streams. |
|
|
|
|
|
Suitable for use with `yolo predict source='rtsp://example.com/media.mp4'`, supports RTSP, RTMP, HTTP, and TCP streams. |
|
|
|
|
|
Attributes: |
|
|
sources (str): The source input paths or URLs for the video streams. |
|
|
imgsz (int): The image size for processing, defaults to 640. |
|
|
vid_stride (int): Video frame-rate stride, defaults to 1. |
|
|
buffer (bool): Whether to buffer input streams, defaults to False. |
|
|
running (bool): Flag to indicate if the streaming thread is running. |
|
|
mode (str): Set to 'stream' indicating real-time capture. |
|
|
imgs (list): List of image frames for each stream. |
|
|
fps (list): List of FPS for each stream. |
|
|
frames (list): List of total frames for each stream. |
|
|
threads (list): List of threads for each stream. |
|
|
shape (list): List of shapes for each stream. |
|
|
caps (list): List of cv2.VideoCapture objects for each stream. |
|
|
bs (int): Batch size for processing. |
|
|
|
|
|
Methods: |
|
|
__init__: Initialize the stream loader. |
|
|
update: Read stream frames in daemon thread. |
|
|
close: Close stream loader and release resources. |
|
|
__iter__: Returns an iterator object for the class. |
|
|
__next__: Returns source paths, transformed, and original images for processing. |
|
|
__len__: Return the length of the sources object. |
|
|
""" |
|
|
|
|
|
def __init__(self, sources="file.streams", imgsz=640, vid_stride=1, buffer=False): |
|
|
"""Initialize instance variables and check for consistent input stream shapes.""" |
|
|
torch.backends.cudnn.benchmark = True # faster for fixed-size inference |
|
|
self.buffer = buffer # buffer input streams |
|
|
self.running = True # running flag for Thread |
|
|
self.mode = "stream" |
|
|
self.imgsz = imgsz |
|
|
self.vid_stride = vid_stride # video frame-rate stride |
|
|
|
|
|
sources = Path(sources).read_text().rsplit() if os.path.isfile(sources) else [sources] |
|
|
n = len(sources) |
|
|
self.fps = [0] * n # frames per second |
|
|
self.frames = [0] * n |
|
|
self.threads = [None] * n |
|
|
self.caps = [None] * n # video capture objects |
|
|
self.imgs = [[] for _ in range(n)] # images |
|
|
self.shape = [[] for _ in range(n)] # image shapes |
|
|
self.sources = [ops.clean_str(x) for x in sources] # clean source names for later |
|
|
for i, s in enumerate(sources): # index, source |
|
|
# Start thread to read frames from video stream |
|
|
st = f"{i + 1}/{n}: {s}... " |
|
|
if urlparse(s).hostname in ("www.youtube.com", "youtube.com", "youtu.be"): # if source is YouTube video |
|
|
# YouTube format i.e. 'https://www.youtube.com/watch?v=Zgi9g1ksQHc' or 'https://youtu.be/LNwODJXcvt4' |
|
|
s = get_best_youtube_url(s) |
|
|
s = eval(s) if s.isnumeric() else s # i.e. s = '0' local webcam |
|
|
if s == 0 and (is_colab() or is_kaggle()): |
|
|
raise NotImplementedError( |
|
|
"'source=0' webcam not supported in Colab and Kaggle notebooks. " |
|
|
"Try running 'source=0' in a local environment." |
|
|
) |
|
|
self.caps[i] = cv2.VideoCapture(s) # store video capture object |
|
|
if not self.caps[i].isOpened(): |
|
|
raise ConnectionError(f"{st}Failed to open {s}") |
|
|
w = int(self.caps[i].get(cv2.CAP_PROP_FRAME_WIDTH)) |
|
|
h = int(self.caps[i].get(cv2.CAP_PROP_FRAME_HEIGHT)) |
|
|
fps = self.caps[i].get(cv2.CAP_PROP_FPS) # warning: may return 0 or nan |
|
|
self.frames[i] = max(int(self.caps[i].get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float( |
|
|
"inf" |
|
|
) # infinite stream fallback |
|
|
self.fps[i] = max((fps if math.isfinite(fps) else 0) % 100, 0) or 30 # 30 FPS fallback |
|
|
|
|
|
success, im = self.caps[i].read() # guarantee first frame |
|
|
if not success or im is None: |
|
|
raise ConnectionError(f"{st}Failed to read images from {s}") |
|
|
self.imgs[i].append(im) |
|
|
self.shape[i] = im.shape |
|
|
self.threads[i] = Thread(target=self.update, args=([i, self.caps[i], s]), daemon=True) |
|
|
LOGGER.info(f"{st}Success ✅ ({self.frames[i]} frames of shape {w}x{h} at {self.fps[i]:.2f} FPS)") |
|
|
self.threads[i].start() |
|
|
LOGGER.info("") # newline |
|
|
|
|
|
# Check for common shapes |
|
|
self.bs = self.__len__() |
|
|
|
|
|
def update(self, i, cap, stream): |
|
|
"""Read stream `i` frames in daemon thread.""" |
|
|
n, f = 0, self.frames[i] # frame number, frame array |
|
|
while self.running and cap.isOpened() and n < (f - 1): |
|
|
if len(self.imgs[i]) < 30: # keep a <=30-image buffer |
|
|
n += 1 |
|
|
cap.grab() # .read() = .grab() followed by .retrieve() |
|
|
if n % self.vid_stride == 0: |
|
|
success, im = cap.retrieve() |
|
|
if not success: |
|
|
im = np.zeros(self.shape[i], dtype=np.uint8) |
|
|
LOGGER.warning("WARNING ⚠️ Video stream unresponsive, please check your IP camera connection.") |
|
|
cap.open(stream) # re-open stream if signal was lost |
|
|
if self.buffer: |
|
|
self.imgs[i].append(im) |
|
|
else: |
|
|
self.imgs[i] = [im] |
|
|
else: |
|
|
time.sleep(0.01) # wait until the buffer is empty |
|
|
|
|
|
def close(self): |
|
|
"""Close stream loader and release resources.""" |
|
|
self.running = False # stop flag for Thread |
|
|
for thread in self.threads: |
|
|
if thread.is_alive(): |
|
|
thread.join(timeout=5) # Add timeout |
|
|
for cap in self.caps: # Iterate through the stored VideoCapture objects |
|
|
try: |
|
|
cap.release() # release video capture |
|
|
except Exception as e: |
|
|
LOGGER.warning(f"WARNING ⚠️ Could not release VideoCapture object: {e}") |
|
|
cv2.destroyAllWindows() |
|
|
|
|
|
def __iter__(self): |
|
|
"""Iterates through YOLO image feed and re-opens unresponsive streams.""" |
|
|
self.count = -1 |
|
|
return self |
|
|
|
|
|
def __next__(self): |
|
|
"""Returns source paths, transformed and original images for processing.""" |
|
|
self.count += 1 |
|
|
|
|
|
images = [] |
|
|
for i, x in enumerate(self.imgs): |
|
|
# Wait until a frame is available in each buffer |
|
|
while not x: |
|
|
if not self.threads[i].is_alive() or cv2.waitKey(1) == ord("q"): # q to quit |
|
|
self.close() |
|
|
raise StopIteration |
|
|
time.sleep(1 / min(self.fps)) |
|
|
x = self.imgs[i] |
|
|
if not x: |
|
|
LOGGER.warning(f"WARNING ⚠️ Waiting for stream {i}") |
|
|
|
|
|
# Get and remove the first frame from imgs buffer |
|
|
if self.buffer: |
|
|
images.append(x.pop(0)) |
|
|
|
|
|
# Get the last frame, and clear the rest from the imgs buffer |
|
|
else: |
|
|
images.append(x.pop(-1) if x else np.zeros(self.shape[i], dtype=np.uint8)) |
|
|
x.clear() |
|
|
|
|
|
return self.sources, images, None, "" |
|
|
|
|
|
def __len__(self): |
|
|
"""Return the length of the sources object.""" |
|
|
return len(self.sources) # 1E12 frames = 32 streams at 30 FPS for 30 years |
|
|
|
|
|
|
|
|
class LoadScreenshots: |
|
|
""" |
|
|
YOLOv8 screenshot dataloader. |
|
|
|
|
|
This class manages the loading of screenshot images for processing with YOLOv8. |
|
|
Suitable for use with `yolo predict source=screen`. |
|
|
|
|
|
Attributes: |
|
|
source (str): The source input indicating which screen to capture. |
|
|
imgsz (int): The image size for processing, defaults to 640. |
|
|
screen (int): The screen number to capture. |
|
|
left (int): The left coordinate for screen capture area. |
|
|
top (int): The top coordinate for screen capture area. |
|
|
width (int): The width of the screen capture area. |
|
|
height (int): The height of the screen capture area. |
|
|
mode (str): Set to 'stream' indicating real-time capture. |
|
|
frame (int): Counter for captured frames. |
|
|
sct (mss.mss): Screen capture object from `mss` library. |
|
|
bs (int): Batch size, set to 1. |
|
|
monitor (dict): Monitor configuration details. |
|
|
|
|
|
Methods: |
|
|
__iter__: Returns an iterator object. |
|
|
__next__: Captures the next screenshot and returns it. |
|
|
""" |
|
|
|
|
|
def __init__(self, source, imgsz=640): |
|
|
"""Source = [screen_number left top width height] (pixels).""" |
|
|
check_requirements("mss") |
|
|
import mss # noqa |
|
|
|
|
|
source, *params = source.split() |
|
|
self.screen, left, top, width, height = 0, None, None, None, None # default to full screen 0 |
|
|
if len(params) == 1: |
|
|
self.screen = int(params[0]) |
|
|
elif len(params) == 4: |
|
|
left, top, width, height = (int(x) for x in params) |
|
|
elif len(params) == 5: |
|
|
self.screen, left, top, width, height = (int(x) for x in params) |
|
|
self.imgsz = imgsz |
|
|
self.mode = "stream" |
|
|
self.frame = 0 |
|
|
self.sct = mss.mss() |
|
|
self.bs = 1 |
|
|
|
|
|
# Parse monitor shape |
|
|
monitor = self.sct.monitors[self.screen] |
|
|
self.top = monitor["top"] if top is None else (monitor["top"] + top) |
|
|
self.left = monitor["left"] if left is None else (monitor["left"] + left) |
|
|
self.width = width or monitor["width"] |
|
|
self.height = height or monitor["height"] |
|
|
self.monitor = {"left": self.left, "top": self.top, "width": self.width, "height": self.height} |
|
|
|
|
|
def __iter__(self): |
|
|
"""Returns an iterator of the object.""" |
|
|
return self |
|
|
|
|
|
def __next__(self): |
|
|
"""mss screen capture: get raw pixels from the screen as np array.""" |
|
|
im0 = np.asarray(self.sct.grab(self.monitor))[:, :, :3] # BGRA to BGR |
|
|
s = f"screen {self.screen} (LTWH): {self.left},{self.top},{self.width},{self.height}: " |
|
|
|
|
|
self.frame += 1 |
|
|
return [str(self.screen)], [im0], None, s # screen, img, vid_cap, string |
|
|
|
|
|
|
|
|
class LoadImages: |
|
|
""" |
|
|
YOLOv8 image/video dataloader. |
|
|
|
|
|
This class manages the loading and pre-processing of image and video data for YOLOv8. It supports loading from |
|
|
various formats, including single image files, video files, and lists of image and video paths. |
|
|
|
|
|
Attributes: |
|
|
imgsz (int): Image size, defaults to 640. |
|
|
files (list): List of image and video file paths. |
|
|
nf (int): Total number of files (images and videos). |
|
|
video_flag (list): Flags indicating whether a file is a video (True) or an image (False). |
|
|
mode (str): Current mode, 'image' or 'video'. |
|
|
vid_stride (int): Stride for video frame-rate, defaults to 1. |
|
|
bs (int): Batch size, set to 1 for this class. |
|
|
cap (cv2.VideoCapture): Video capture object for OpenCV. |
|
|
frame (int): Frame counter for video. |
|
|
frames (int): Total number of frames in the video. |
|
|
count (int): Counter for iteration, initialized at 0 during `__iter__()`. |
|
|
|
|
|
Methods: |
|
|
_new_video(path): Create a new cv2.VideoCapture object for a given video path. |
|
|
""" |
|
|
|
|
|
def __init__(self, path, imgsz=640, vid_stride=1): |
|
|
"""Initialize the Dataloader and raise FileNotFoundError if file not found.""" |
|
|
parent = None |
|
|
if isinstance(path, str) and Path(path).suffix == ".txt": # *.txt file with img/vid/dir on each line |
|
|
parent = Path(path).parent |
|
|
path = Path(path).read_text().splitlines() # list of sources |
|
|
files = [] |
|
|
for p in sorted(path) if isinstance(path, (list, tuple)) else [path]: |
|
|
a = str(Path(p).absolute()) # do not use .resolve() https://github.com/ultralytics/ultralytics/issues/2912 |
|
|
if "*" in a: |
|
|
files.extend(sorted(glob.glob(a, recursive=True))) # glob |
|
|
elif os.path.isdir(a): |
|
|
files.extend(sorted(glob.glob(os.path.join(a, "*.*")))) # dir |
|
|
elif os.path.isfile(a): |
|
|
files.append(a) # files (absolute or relative to CWD) |
|
|
elif parent and (parent / p).is_file(): |
|
|
files.append(str((parent / p).absolute())) # files (relative to *.txt file parent) |
|
|
else: |
|
|
raise FileNotFoundError(f"{p} does not exist") |
|
|
|
|
|
images = [x for x in files if x.split(".")[-1].lower() in IMG_FORMATS] |
|
|
videos = [x for x in files if x.split(".")[-1].lower() in VID_FORMATS] |
|
|
ni, nv = len(images), len(videos) |
|
|
|
|
|
self.imgsz = imgsz |
|
|
self.files = images + videos |
|
|
self.nf = ni + nv # number of files |
|
|
self.video_flag = [False] * ni + [True] * nv |
|
|
self.mode = "image" |
|
|
self.vid_stride = vid_stride # video frame-rate stride |
|
|
self.bs = 1 |
|
|
if any(videos): |
|
|
self._new_video(videos[0]) # new video |
|
|
else: |
|
|
self.cap = None |
|
|
if self.nf == 0: |
|
|
raise FileNotFoundError( |
|
|
f"No images or videos found in {p}. " |
|
|
f"Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}" |
|
|
) |
|
|
|
|
|
def __iter__(self): |
|
|
"""Returns an iterator object for VideoStream or ImageFolder.""" |
|
|
self.count = 0 |
|
|
return self |
|
|
|
|
|
def __next__(self): |
|
|
"""Return next image, path and metadata from dataset.""" |
|
|
if self.count == self.nf: |
|
|
raise StopIteration |
|
|
path = self.files[self.count] |
|
|
|
|
|
if self.video_flag[self.count]: |
|
|
# Read video |
|
|
self.mode = "video" |
|
|
for _ in range(self.vid_stride): |
|
|
self.cap.grab() |
|
|
success, im0 = self.cap.retrieve() |
|
|
while not success: |
|
|
self.count += 1 |
|
|
self.cap.release() |
|
|
if self.count == self.nf: # last video |
|
|
raise StopIteration |
|
|
path = self.files[self.count] |
|
|
self._new_video(path) |
|
|
success, im0 = self.cap.read() |
|
|
|
|
|
self.frame += 1 |
|
|
# im0 = self._cv2_rotate(im0) # for use if cv2 autorotation is False |
|
|
s = f"video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: " |
|
|
|
|
|
else: |
|
|
# Read image |
|
|
self.count += 1 |
|
|
im0 = cv2.imread(path) # BGR |
|
|
if im0 is None: |
|
|
raise FileNotFoundError(f"Image Not Found {path}") |
|
|
s = f"image {self.count}/{self.nf} {path}: " |
|
|
|
|
|
return [path], [im0], self.cap, s |
|
|
|
|
|
def _new_video(self, path): |
|
|
"""Create a new video capture object.""" |
|
|
self.frame = 0 |
|
|
self.cap = cv2.VideoCapture(path) |
|
|
self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT) / self.vid_stride) |
|
|
|
|
|
def __len__(self): |
|
|
"""Returns the number of files in the object.""" |
|
|
return self.nf # number of files |
|
|
|
|
|
|
|
|
class LoadPilAndNumpy: |
|
|
""" |
|
|
Load images from PIL and Numpy arrays for batch processing. |
|
|
|
|
|
This class is designed to manage loading and pre-processing of image data from both PIL and Numpy formats. |
|
|
It performs basic validation and format conversion to ensure that the images are in the required format for |
|
|
downstream processing. |
|
|
|
|
|
Attributes: |
|
|
paths (list): List of image paths or autogenerated filenames. |
|
|
im0 (list): List of images stored as Numpy arrays. |
|
|
imgsz (int): Image size, defaults to 640. |
|
|
mode (str): Type of data being processed, defaults to 'image'. |
|
|
bs (int): Batch size, equivalent to the length of `im0`. |
|
|
count (int): Counter for iteration, initialized at 0 during `__iter__()`. |
|
|
|
|
|
Methods: |
|
|
_single_check(im): Validate and format a single image to a Numpy array. |
|
|
""" |
|
|
|
|
|
def __init__(self, im0, imgsz=640): |
|
|
"""Initialize PIL and Numpy Dataloader.""" |
|
|
if not isinstance(im0, list): |
|
|
im0 = [im0] |
|
|
self.paths = [getattr(im, "filename", f"image{i}.jpg") for i, im in enumerate(im0)] |
|
|
self.im0 = [self._single_check(im) for im in im0] |
|
|
self.imgsz = imgsz |
|
|
self.mode = "image" |
|
|
# Generate fake paths |
|
|
self.bs = len(self.im0) |
|
|
|
|
|
@staticmethod |
|
|
def _single_check(im): |
|
|
"""Validate and format an image to numpy array.""" |
|
|
assert isinstance(im, (Image.Image, np.ndarray)), f"Expected PIL/np.ndarray image type, but got {type(im)}" |
|
|
if isinstance(im, Image.Image): |
|
|
if im.mode != "RGB": |
|
|
im = im.convert("RGB") |
|
|
im = np.asarray(im)[:, :, ::-1] |
|
|
im = np.ascontiguousarray(im) # contiguous |
|
|
return im |
|
|
|
|
|
def __len__(self): |
|
|
"""Returns the length of the 'im0' attribute.""" |
|
|
return len(self.im0) |
|
|
|
|
|
def __next__(self): |
|
|
"""Returns batch paths, images, processed images, None, ''.""" |
|
|
if self.count == 1: # loop only once as it's batch inference |
|
|
raise StopIteration |
|
|
self.count += 1 |
|
|
return self.paths, self.im0, None, "" |
|
|
|
|
|
def __iter__(self): |
|
|
"""Enables iteration for class LoadPilAndNumpy.""" |
|
|
self.count = 0 |
|
|
return self |
|
|
|
|
|
|
|
|
class LoadTensor: |
|
|
""" |
|
|
Load images from torch.Tensor data. |
|
|
|
|
|
This class manages the loading and pre-processing of image data from PyTorch tensors for further processing. |
|
|
|
|
|
Attributes: |
|
|
im0 (torch.Tensor): The input tensor containing the image(s). |
|
|
bs (int): Batch size, inferred from the shape of `im0`. |
|
|
mode (str): Current mode, set to 'image'. |
|
|
paths (list): List of image paths or filenames. |
|
|
count (int): Counter for iteration, initialized at 0 during `__iter__()`. |
|
|
|
|
|
Methods: |
|
|
_single_check(im, stride): Validate and possibly modify the input tensor. |
|
|
""" |
|
|
|
|
|
def __init__(self, im0) -> None: |
|
|
"""Initialize Tensor Dataloader.""" |
|
|
self.im0 = self._single_check(im0) |
|
|
self.bs = self.im0.shape[0] |
|
|
self.mode = "image" |
|
|
self.paths = [getattr(im, "filename", f"image{i}.jpg") for i, im in enumerate(im0)] |
|
|
|
|
|
@staticmethod |
|
|
def _single_check(im, stride=32): |
|
|
"""Validate and format an image to torch.Tensor.""" |
|
|
s = ( |
|
|
f"WARNING ⚠️ torch.Tensor inputs should be BCHW i.e. shape(1, 3, 640, 640) " |
|
|
f"divisible by stride {stride}. Input shape{tuple(im.shape)} is incompatible." |
|
|
) |
|
|
if len(im.shape) != 4: |
|
|
if len(im.shape) != 3: |
|
|
raise ValueError(s) |
|
|
LOGGER.warning(s) |
|
|
im = im.unsqueeze(0) |
|
|
if im.shape[2] % stride or im.shape[3] % stride: |
|
|
raise ValueError(s) |
|
|
if im.max() > 1.0 + torch.finfo(im.dtype).eps: # torch.float32 eps is 1.2e-07 |
|
|
LOGGER.warning( |
|
|
f"WARNING ⚠️ torch.Tensor inputs should be normalized 0.0-1.0 but max value is {im.max()}. " |
|
|
f"Dividing input by 255." |
|
|
) |
|
|
im = im.float() / 255.0 |
|
|
|
|
|
return im |
|
|
|
|
|
def __iter__(self): |
|
|
"""Returns an iterator object.""" |
|
|
self.count = 0 |
|
|
return self |
|
|
|
|
|
def __next__(self): |
|
|
"""Return next item in the iterator.""" |
|
|
if self.count == 1: |
|
|
raise StopIteration |
|
|
self.count += 1 |
|
|
return self.paths, self.im0, None, "" |
|
|
|
|
|
def __len__(self): |
|
|
"""Returns the batch size.""" |
|
|
return self.bs |
|
|
|
|
|
|
|
|
def autocast_list(source): |
|
|
"""Merges a list of source of different types into a list of numpy arrays or PIL images.""" |
|
|
files = [] |
|
|
for im in source: |
|
|
if isinstance(im, (str, Path)): # filename or uri |
|
|
files.append(Image.open(requests.get(im, stream=True).raw if str(im).startswith("http") else im)) |
|
|
elif isinstance(im, (Image.Image, np.ndarray)): # PIL or np Image |
|
|
files.append(im) |
|
|
else: |
|
|
raise TypeError( |
|
|
f"type {type(im).__name__} is not a supported Ultralytics prediction source type. \n" |
|
|
f"See https://docs.ultralytics.com/modes/predict for supported source types." |
|
|
) |
|
|
|
|
|
return files |
|
|
|
|
|
|
|
|
LOADERS = LoadStreams, LoadPilAndNumpy, LoadImages, LoadScreenshots # tuple |
|
|
|
|
|
|
|
|
def get_best_youtube_url(url, use_pafy=True): |
|
|
""" |
|
|
Retrieves the URL of the best quality MP4 video stream from a given YouTube video. |
|
|
|
|
|
This function uses the pafy or yt_dlp library to extract the video info from YouTube. It then finds the highest |
|
|
quality MP4 format that has video codec but no audio codec, and returns the URL of this video stream. |
|
|
|
|
|
Args: |
|
|
url (str): The URL of the YouTube video. |
|
|
use_pafy (bool): Use the pafy package, default=True, otherwise use yt_dlp package. |
|
|
|
|
|
Returns: |
|
|
(str): The URL of the best quality MP4 video stream, or None if no suitable stream is found. |
|
|
""" |
|
|
if use_pafy: |
|
|
check_requirements(("pafy", "youtube_dl==2020.12.2")) |
|
|
import pafy # noqa |
|
|
|
|
|
return pafy.new(url).getbestvideo(preftype="mp4").url |
|
|
else: |
|
|
check_requirements("yt-dlp") |
|
|
import yt_dlp |
|
|
|
|
|
with yt_dlp.YoutubeDL({"quiet": True}) as ydl: |
|
|
info_dict = ydl.extract_info(url, download=False) # extract info |
|
|
for f in reversed(info_dict.get("formats", [])): # reversed because best is usually last |
|
|
# Find a format with video codec, no audio, *.mp4 extension at least 1920x1080 size |
|
|
good_size = (f.get("width") or 0) >= 1920 or (f.get("height") or 0) >= 1080 |
|
|
if good_size and f["vcodec"] != "none" and f["acodec"] == "none" and f["ext"] == "mp4": |
|
|
return f.get("url")
|
|
|
|