You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
251 lines
12 KiB
251 lines
12 KiB
# Ultralytics YOLO 🚀, GPL-3.0 license |
|
|
|
import os |
|
from multiprocessing.pool import ThreadPool |
|
from pathlib import Path |
|
|
|
import hydra |
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
from ultralytics.yolo.utils import DEFAULT_CONFIG, NUM_THREADS, ops |
|
from ultralytics.yolo.utils.checks import check_requirements |
|
from ultralytics.yolo.utils.metrics import ConfusionMatrix, SegmentMetrics, box_iou, mask_iou |
|
from ultralytics.yolo.utils.plotting import output_to_target, plot_images |
|
from ultralytics.yolo.v8.detect import DetectionValidator |
|
|
|
|
|
class SegmentationValidator(DetectionValidator): |
|
|
|
def __init__(self, dataloader=None, save_dir=None, pbar=None, logger=None, args=None): |
|
super().__init__(dataloader, save_dir, pbar, logger, args) |
|
self.args.task = "segment" |
|
self.metrics = SegmentMetrics(save_dir=self.save_dir) |
|
|
|
def preprocess(self, batch): |
|
batch = super().preprocess(batch) |
|
batch["masks"] = batch["masks"].to(self.device).float() |
|
return batch |
|
|
|
def init_metrics(self, model): |
|
head = model.model[-1] if self.training else model.model.model[-1] |
|
val = self.data.get('val', '') # validation path |
|
self.is_coco = isinstance(val, str) and val.endswith(f'coco{os.sep}val2017.txt') # is COCO dataset |
|
self.class_map = ops.coco80_to_coco91_class() if self.is_coco else list(range(1000)) |
|
self.args.save_json |= self.is_coco and not self.training # run on final val if training COCO |
|
self.nc = head.nc |
|
self.nm = head.nm if hasattr(head, "nm") else 32 |
|
self.names = model.names |
|
self.metrics.names = self.names |
|
self.metrics.plot = self.args.plots |
|
self.confusion_matrix = ConfusionMatrix(nc=self.nc) |
|
self.plot_masks = [] |
|
self.seen = 0 |
|
self.jdict = [] |
|
self.stats = [] |
|
if self.args.save_json: |
|
self.process = ops.process_mask_upsample # more accurate |
|
else: |
|
self.process = ops.process_mask # faster |
|
|
|
def get_desc(self): |
|
return ('%22s' + '%11s' * 10) % ('Class', 'Images', 'Instances', 'Box(P', "R", "mAP50", "mAP50-95)", "Mask(P", |
|
"R", "mAP50", "mAP50-95)") |
|
|
|
def postprocess(self, preds): |
|
p = ops.non_max_suppression(preds[0], |
|
self.args.conf, |
|
self.args.iou, |
|
labels=self.lb, |
|
multi_label=True, |
|
agnostic=self.args.single_cls, |
|
max_det=self.args.max_det, |
|
nm=self.nm) |
|
return p, preds[1][-1] |
|
|
|
def update_metrics(self, preds, batch): |
|
# Metrics |
|
for si, (pred, proto) in enumerate(zip(preds[0], preds[1])): |
|
idx = batch["batch_idx"] == si |
|
cls = batch["cls"][idx] |
|
bbox = batch["bboxes"][idx] |
|
nl, npr = cls.shape[0], pred.shape[0] # number of labels, predictions |
|
shape = batch["ori_shape"][si] |
|
correct_masks = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init |
|
correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init |
|
self.seen += 1 |
|
|
|
if npr == 0: |
|
if nl: |
|
self.stats.append((correct_masks, correct_bboxes, *torch.zeros( |
|
(2, 0), device=self.device), cls.squeeze(-1))) |
|
if self.args.plots: |
|
self.confusion_matrix.process_batch(detections=None, labels=cls.squeeze(-1)) |
|
continue |
|
|
|
# Masks |
|
midx = [si] if self.args.overlap_mask else idx |
|
gt_masks = batch["masks"][midx] |
|
pred_masks = self.process(proto, pred[:, 6:], pred[:, :4], shape=batch["img"][si].shape[1:]) |
|
|
|
# Predictions |
|
if self.args.single_cls: |
|
pred[:, 5] = 0 |
|
predn = pred.clone() |
|
ops.scale_boxes(batch["img"][si].shape[1:], predn[:, :4], shape, |
|
ratio_pad=batch["ratio_pad"][si]) # native-space pred |
|
|
|
# Evaluate |
|
if nl: |
|
height, width = batch["img"].shape[2:] |
|
tbox = ops.xywh2xyxy(bbox) * torch.tensor( |
|
(width, height, width, height), device=self.device) # target boxes |
|
ops.scale_boxes(batch["img"][si].shape[1:], tbox, shape, |
|
ratio_pad=batch["ratio_pad"][si]) # native-space labels |
|
labelsn = torch.cat((cls, tbox), 1) # native-space labels |
|
correct_bboxes = self._process_batch(predn, labelsn) |
|
# TODO: maybe remove these `self.` arguments as they already are member variable |
|
correct_masks = self._process_batch(predn, |
|
labelsn, |
|
pred_masks, |
|
gt_masks, |
|
overlap=self.args.overlap_mask, |
|
masks=True) |
|
if self.args.plots: |
|
self.confusion_matrix.process_batch(predn, labelsn) |
|
self.stats.append((correct_masks, correct_bboxes, pred[:, 4], pred[:, |
|
5], cls.squeeze(-1))) # conf, pcls, tcls |
|
|
|
pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8) |
|
if self.args.plots and self.batch_i < 3: |
|
self.plot_masks.append(pred_masks[:15].cpu()) # filter top 15 to plot |
|
|
|
# Save |
|
if self.args.save_json: |
|
pred_masks = ops.scale_image(batch["img"][si].shape[1:], |
|
pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(), |
|
shape, |
|
ratio_pad=batch["ratio_pad"][si]) |
|
self.pred_to_json(predn, batch["im_file"][si], pred_masks) |
|
# if self.args.save_txt: |
|
# save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt') |
|
|
|
def _process_batch(self, detections, labels, pred_masks=None, gt_masks=None, overlap=False, masks=False): |
|
""" |
|
Return correct prediction matrix |
|
Arguments: |
|
detections (array[N, 6]), x1, y1, x2, y2, conf, class |
|
labels (array[M, 5]), class, x1, y1, x2, y2 |
|
Returns: |
|
correct (array[N, 10]), for 10 IoU levels |
|
""" |
|
if masks: |
|
if overlap: |
|
nl = len(labels) |
|
index = torch.arange(nl, device=gt_masks.device).view(nl, 1, 1) + 1 |
|
gt_masks = gt_masks.repeat(nl, 1, 1) # shape(1,640,640) -> (n,640,640) |
|
gt_masks = torch.where(gt_masks == index, 1.0, 0.0) |
|
if gt_masks.shape[1:] != pred_masks.shape[1:]: |
|
gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode="bilinear", align_corners=False)[0] |
|
gt_masks = gt_masks.gt_(0.5) |
|
iou = mask_iou(gt_masks.view(gt_masks.shape[0], -1), pred_masks.view(pred_masks.shape[0], -1)) |
|
else: # boxes |
|
iou = box_iou(labels[:, 1:], detections[:, :4]) |
|
|
|
correct = np.zeros((detections.shape[0], self.iouv.shape[0])).astype(bool) |
|
correct_class = labels[:, 0:1] == detections[:, 5] |
|
for i in range(len(self.iouv)): |
|
x = torch.where((iou >= self.iouv[i]) & correct_class) # IoU > threshold and classes match |
|
if x[0].shape[0]: |
|
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), |
|
1).cpu().numpy() # [label, detect, iou] |
|
if x[0].shape[0] > 1: |
|
matches = matches[matches[:, 2].argsort()[::-1]] |
|
matches = matches[np.unique(matches[:, 1], return_index=True)[1]] |
|
# matches = matches[matches[:, 2].argsort()[::-1]] |
|
matches = matches[np.unique(matches[:, 0], return_index=True)[1]] |
|
correct[matches[:, 1].astype(int), i] = True |
|
return torch.tensor(correct, dtype=torch.bool, device=detections.device) |
|
|
|
def plot_val_samples(self, batch, ni): |
|
plot_images(batch["img"], |
|
batch["batch_idx"], |
|
batch["cls"].squeeze(-1), |
|
batch["bboxes"], |
|
batch["masks"], |
|
paths=batch["im_file"], |
|
fname=self.save_dir / f"val_batch{ni}_labels.jpg", |
|
names=self.names) |
|
|
|
def plot_predictions(self, batch, preds, ni): |
|
plot_images(batch["img"], |
|
*output_to_target(preds[0], max_det=15), |
|
torch.cat(self.plot_masks, dim=0) if len(self.plot_masks) else self.plot_masks, |
|
paths=batch["im_file"], |
|
fname=self.save_dir / f'val_batch{ni}_pred.jpg', |
|
names=self.names) # pred |
|
self.plot_masks.clear() |
|
|
|
def pred_to_json(self, predn, filename, pred_masks): |
|
# Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236} |
|
from pycocotools.mask import encode |
|
|
|
def single_encode(x): |
|
rle = encode(np.asarray(x[:, :, None], order="F", dtype="uint8"))[0] |
|
rle["counts"] = rle["counts"].decode("utf-8") |
|
return rle |
|
|
|
stem = Path(filename).stem |
|
image_id = int(stem) if stem.isnumeric() else stem |
|
box = ops.xyxy2xywh(predn[:, :4]) # xywh |
|
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner |
|
pred_masks = np.transpose(pred_masks, (2, 0, 1)) |
|
with ThreadPool(NUM_THREADS) as pool: |
|
rles = pool.map(single_encode, pred_masks) |
|
for i, (p, b) in enumerate(zip(predn.tolist(), box.tolist())): |
|
self.jdict.append({ |
|
'image_id': image_id, |
|
'category_id': self.class_map[int(p[5])], |
|
'bbox': [round(x, 3) for x in b], |
|
'score': round(p[4], 5), |
|
'segmentation': rles[i]}) |
|
|
|
def eval_json(self, stats): |
|
if self.args.save_json and self.is_coco and len(self.jdict): |
|
anno_json = self.data['path'] / "annotations/instances_val2017.json" # annotations |
|
pred_json = self.save_dir / "predictions.json" # predictions |
|
self.logger.info(f'\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...') |
|
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb |
|
check_requirements('pycocotools>=2.0.6') |
|
from pycocotools.coco import COCO # noqa |
|
from pycocotools.cocoeval import COCOeval # noqa |
|
|
|
for x in anno_json, pred_json: |
|
assert x.is_file(), f"{x} file not found" |
|
anno = COCO(str(anno_json)) # init annotations api |
|
pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path) |
|
for i, eval in enumerate([COCOeval(anno, pred, 'bbox'), COCOeval(anno, pred, 'segm')]): |
|
if self.is_coco: |
|
eval.params.imgIds = [int(Path(x).stem) |
|
for x in self.dataloader.dataset.im_files] # images to eval |
|
eval.evaluate() |
|
eval.accumulate() |
|
eval.summarize() |
|
idx = i * 4 + 2 |
|
stats[self.metrics.keys[idx + 1]], stats[ |
|
self.metrics.keys[idx]] = eval.stats[:2] # update mAP50-95 and mAP50 |
|
except Exception as e: |
|
self.logger.warning(f'pycocotools unable to run: {e}') |
|
return stats |
|
|
|
|
|
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name) |
|
def val(cfg): |
|
cfg.data = cfg.data or "coco128-seg.yaml" |
|
validator = SegmentationValidator(args=cfg) |
|
validator(model=cfg.model) |
|
|
|
|
|
if __name__ == "__main__": |
|
val()
|
|
|