You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
110 lines
5.7 KiB
110 lines
5.7 KiB
# Ultralytics YOLO 🚀, GPL-3.0 license |
|
# Default training settings and hyperparameters for medium-augmentation COCO training |
|
|
|
task: detect # inference task, i.e. detect, segment, classify |
|
mode: train # YOLO mode, i.e. train, val, predict, export |
|
|
|
# Train settings ------------------------------------------------------------------------------------------------------- |
|
model: # path to model file, i.e. yolov8n.pt, yolov8n.yaml |
|
data: # path to data file, i.e. i.e. coco128.yaml |
|
epochs: 100 # number of epochs to train for |
|
patience: 50 # epochs to wait for no observable improvement for early stopping of training |
|
batch: 16 # number of images per batch (-1 for AutoBatch) |
|
imgsz: 640 # size of input images as integer or w,h |
|
save: True # save train checkpoints and predict results |
|
cache: False # True/ram, disk or False. Use cache for data loading |
|
device: # device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu |
|
workers: 8 # number of worker threads for data loading (per RANK if DDP) |
|
project: # project name |
|
name: # experiment name |
|
exist_ok: False # whether to overwrite existing experiment |
|
pretrained: False # whether to use a pretrained model |
|
optimizer: SGD # optimizer to use, choices=['SGD', 'Adam', 'AdamW', 'RMSProp'] |
|
verbose: True # whether to print verbose output |
|
seed: 0 # random seed for reproducibility |
|
deterministic: True # whether to enable deterministic mode |
|
single_cls: False # train multi-class data as single-class |
|
image_weights: False # use weighted image selection for training |
|
rect: False # support rectangular training if mode='train', support rectangular evaluation if mode='val' |
|
cos_lr: False # use cosine learning rate scheduler |
|
close_mosaic: 10 # disable mosaic augmentation for final 10 epochs |
|
resume: False # resume training from last checkpoint |
|
min_memory: False # minimize memory footprint loss function, choices=[False, True, <roll_out_thr>] |
|
# Segmentation |
|
overlap_mask: True # masks should overlap during training (segment train only) |
|
mask_ratio: 4 # mask downsample ratio (segment train only) |
|
# Classification |
|
dropout: 0.0 # use dropout regularization (classify train only) |
|
|
|
# Val/Test settings ---------------------------------------------------------------------------------------------------- |
|
val: True # validate/test during training |
|
save_json: False # save results to JSON file |
|
save_hybrid: False # save hybrid version of labels (labels + additional predictions) |
|
conf: # object confidence threshold for detection (default 0.25 predict, 0.001 val) |
|
iou: 0.7 # intersection over union (IoU) threshold for NMS |
|
max_det: 300 # maximum number of detections per image |
|
half: False # use half precision (FP16) |
|
dnn: False # use OpenCV DNN for ONNX inference |
|
plots: True # save plots during train/val |
|
|
|
# Prediction settings -------------------------------------------------------------------------------------------------- |
|
source: # source directory for images or videos |
|
show: False # show results if possible |
|
save_txt: False # save results as .txt file |
|
save_conf: False # save results with confidence scores |
|
save_crop: False # save cropped images with results |
|
hide_labels: False # hide labels |
|
hide_conf: False # hide confidence scores |
|
vid_stride: 1 # video frame-rate stride |
|
line_thickness: 3 # bounding box thickness (pixels) |
|
visualize: False # visualize model features |
|
augment: False # apply image augmentation to prediction sources |
|
agnostic_nms: False # class-agnostic NMS |
|
classes: # filter results by class, i.e. class=0, or class=[0,2,3] |
|
retina_masks: False # use high-resolution segmentation masks |
|
boxes: True # Show boxes in segmentation predictions |
|
|
|
# Export settings ------------------------------------------------------------------------------------------------------ |
|
format: torchscript # format to export to |
|
keras: False # use Keras |
|
optimize: False # TorchScript: optimize for mobile |
|
int8: False # CoreML/TF INT8 quantization |
|
dynamic: False # ONNX/TF/TensorRT: dynamic axes |
|
simplify: False # ONNX: simplify model |
|
opset: # ONNX: opset version (optional) |
|
workspace: 4 # TensorRT: workspace size (GB) |
|
nms: False # CoreML: add NMS |
|
|
|
# Hyperparameters ------------------------------------------------------------------------------------------------------ |
|
lr0: 0.01 # initial learning rate (i.e. SGD=1E-2, Adam=1E-3) |
|
lrf: 0.01 # final learning rate (lr0 * lrf) |
|
momentum: 0.937 # SGD momentum/Adam beta1 |
|
weight_decay: 0.0005 # optimizer weight decay 5e-4 |
|
warmup_epochs: 3.0 # warmup epochs (fractions ok) |
|
warmup_momentum: 0.8 # warmup initial momentum |
|
warmup_bias_lr: 0.1 # warmup initial bias lr |
|
box: 7.5 # box loss gain |
|
cls: 0.5 # cls loss gain (scale with pixels) |
|
dfl: 1.5 # dfl loss gain |
|
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5) |
|
label_smoothing: 0.0 # label smoothing (fraction) |
|
nbs: 64 # nominal batch size |
|
hsv_h: 0.015 # image HSV-Hue augmentation (fraction) |
|
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction) |
|
hsv_v: 0.4 # image HSV-Value augmentation (fraction) |
|
degrees: 0.0 # image rotation (+/- deg) |
|
translate: 0.1 # image translation (+/- fraction) |
|
scale: 0.5 # image scale (+/- gain) |
|
shear: 0.0 # image shear (+/- deg) |
|
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001 |
|
flipud: 0.0 # image flip up-down (probability) |
|
fliplr: 0.5 # image flip left-right (probability) |
|
mosaic: 1.0 # image mosaic (probability) |
|
mixup: 0.0 # image mixup (probability) |
|
copy_paste: 0.0 # segment copy-paste (probability) |
|
|
|
# Custom config.yaml --------------------------------------------------------------------------------------------------- |
|
cfg: # for overriding defaults.yaml |
|
|
|
# Debug, do not modify ------------------------------------------------------------------------------------------------- |
|
v5loader: False # use legacy YOLOv5 dataloader
|
|
|