You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
44 lines
1.9 KiB
44 lines
1.9 KiB
# Ultralytics YOLO 🚀, AGPL-3.0 license |
|
|
|
import torch |
|
|
|
from ultralytics.yolo.data.augment import LetterBox |
|
from ultralytics.yolo.engine.predictor import BasePredictor |
|
from ultralytics.yolo.engine.results import Results |
|
from ultralytics.yolo.utils import ops |
|
|
|
|
|
class RTDETRPredictor(BasePredictor): |
|
|
|
def postprocess(self, preds, img, orig_imgs): |
|
"""Postprocess predictions and returns a list of Results objects.""" |
|
bboxes, scores = preds[:2] # (1, bs, 300, 4), (1, bs, 300, nc) |
|
bboxes, scores = bboxes.squeeze_(0), scores.squeeze_(0) |
|
results = [] |
|
for i, bbox in enumerate(bboxes): # (300, 4) |
|
bbox = ops.xywh2xyxy(bbox) |
|
score, cls = scores[i].max(-1, keepdim=True) # (300, 1) |
|
idx = score.squeeze(-1) > self.args.conf # (300, ) |
|
if self.args.classes is not None: |
|
idx = (cls == torch.tensor(self.args.classes, device=cls.device)).any(1) & idx |
|
pred = torch.cat([bbox, score, cls], dim=-1)[idx] # filter |
|
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs |
|
oh, ow = orig_img.shape[:2] |
|
if not isinstance(orig_imgs, torch.Tensor): |
|
pred[..., [0, 2]] *= ow |
|
pred[..., [1, 3]] *= oh |
|
path = self.batch[0] |
|
img_path = path[i] if isinstance(path, list) else path |
|
results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred)) |
|
return results |
|
|
|
def pre_transform(self, im): |
|
"""Pre-transform input image before inference. |
|
|
|
Args: |
|
im (List(np.ndarray)): (N, 3, h, w) for tensor, [(h, w, 3) x N] for list. |
|
|
|
Return: A list of transformed imgs. |
|
""" |
|
# The size must be square(640) and scaleFilled. |
|
return [LetterBox(self.imgsz, auto=False, scaleFill=True)(image=x) for x in im]
|
|
|