|
|
# Ultralytics YOLO 🚀, GPL-3.0 license |
|
|
|
|
|
import contextlib |
|
|
import hashlib |
|
|
import json |
|
|
import os |
|
|
import subprocess |
|
|
import time |
|
|
from multiprocessing.pool import ThreadPool |
|
|
from pathlib import Path |
|
|
from tarfile import is_tarfile |
|
|
from zipfile import is_zipfile |
|
|
|
|
|
import cv2 |
|
|
import numpy as np |
|
|
from PIL import ExifTags, Image, ImageOps |
|
|
from tqdm import tqdm |
|
|
|
|
|
from ultralytics.nn.autobackend import check_class_names |
|
|
from ultralytics.yolo.utils import DATASETS_DIR, LOGGER, NUM_THREADS, ROOT, colorstr, emojis, yaml_load |
|
|
from ultralytics.yolo.utils.checks import check_file, check_font, is_ascii |
|
|
from ultralytics.yolo.utils.downloads import download, safe_download, unzip_file |
|
|
from ultralytics.yolo.utils.ops import segments2boxes |
|
|
|
|
|
HELP_URL = 'See https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data' |
|
|
IMG_FORMATS = 'bmp', 'dng', 'jpeg', 'jpg', 'mpo', 'png', 'tif', 'tiff', 'webp', 'pfm' # image suffixes |
|
|
VID_FORMATS = 'asf', 'avi', 'gif', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'ts', 'wmv', 'webm' # video suffixes |
|
|
PIN_MEMORY = str(os.getenv('PIN_MEMORY', True)).lower() == 'true' # global pin_memory for dataloaders |
|
|
IMAGENET_MEAN = 0.485, 0.456, 0.406 # RGB mean |
|
|
IMAGENET_STD = 0.229, 0.224, 0.225 # RGB standard deviation |
|
|
|
|
|
# Get orientation exif tag |
|
|
for orientation in ExifTags.TAGS.keys(): |
|
|
if ExifTags.TAGS[orientation] == 'Orientation': |
|
|
break |
|
|
|
|
|
|
|
|
def img2label_paths(img_paths): |
|
|
# Define label paths as a function of image paths |
|
|
sa, sb = f'{os.sep}images{os.sep}', f'{os.sep}labels{os.sep}' # /images/, /labels/ substrings |
|
|
return [sb.join(x.rsplit(sa, 1)).rsplit('.', 1)[0] + '.txt' for x in img_paths] |
|
|
|
|
|
|
|
|
def get_hash(paths): |
|
|
# Returns a single hash value of a list of paths (files or dirs) |
|
|
size = sum(os.path.getsize(p) for p in paths if os.path.exists(p)) # sizes |
|
|
h = hashlib.sha256(str(size).encode()) # hash sizes |
|
|
h.update(''.join(paths).encode()) # hash paths |
|
|
return h.hexdigest() # return hash |
|
|
|
|
|
|
|
|
def exif_size(img): |
|
|
# Returns exif-corrected PIL size |
|
|
s = img.size # (width, height) |
|
|
with contextlib.suppress(Exception): |
|
|
rotation = dict(img._getexif().items())[orientation] |
|
|
if rotation in [6, 8]: # rotation 270 or 90 |
|
|
s = (s[1], s[0]) |
|
|
return s |
|
|
|
|
|
|
|
|
def verify_image_label(args): |
|
|
# Verify one image-label pair |
|
|
im_file, lb_file, prefix, keypoint, num_cls = args |
|
|
# number (missing, found, empty, corrupt), message, segments, keypoints |
|
|
nm, nf, ne, nc, msg, segments, keypoints = 0, 0, 0, 0, '', [], None |
|
|
try: |
|
|
# verify images |
|
|
im = Image.open(im_file) |
|
|
im.verify() # PIL verify |
|
|
shape = exif_size(im) # image size |
|
|
shape = (shape[1], shape[0]) # hw |
|
|
assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels' |
|
|
assert im.format.lower() in IMG_FORMATS, f'invalid image format {im.format}' |
|
|
if im.format.lower() in ('jpg', 'jpeg'): |
|
|
with open(im_file, 'rb') as f: |
|
|
f.seek(-2, 2) |
|
|
if f.read() != b'\xff\xd9': # corrupt JPEG |
|
|
ImageOps.exif_transpose(Image.open(im_file)).save(im_file, 'JPEG', subsampling=0, quality=100) |
|
|
msg = f'{prefix}WARNING ⚠️ {im_file}: corrupt JPEG restored and saved' |
|
|
|
|
|
# verify labels |
|
|
if os.path.isfile(lb_file): |
|
|
nf = 1 # label found |
|
|
with open(lb_file) as f: |
|
|
lb = [x.split() for x in f.read().strip().splitlines() if len(x)] |
|
|
if any(len(x) > 6 for x in lb) and (not keypoint): # is segment |
|
|
classes = np.array([x[0] for x in lb], dtype=np.float32) |
|
|
segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb] # (cls, xy1...) |
|
|
lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh) |
|
|
lb = np.array(lb, dtype=np.float32) |
|
|
nl = len(lb) |
|
|
if nl: |
|
|
if keypoint: |
|
|
assert lb.shape[1] == 56, 'labels require 56 columns each' |
|
|
assert (lb[:, 5::3] <= 1).all(), 'non-normalized or out of bounds coordinate labels' |
|
|
assert (lb[:, 6::3] <= 1).all(), 'non-normalized or out of bounds coordinate labels' |
|
|
kpts = np.zeros((lb.shape[0], 39)) |
|
|
for i in range(len(lb)): |
|
|
kpt = np.delete(lb[i, 5:], np.arange(2, lb.shape[1] - 5, 3)) # remove occlusion param from GT |
|
|
kpts[i] = np.hstack((lb[i, :5], kpt)) |
|
|
lb = kpts |
|
|
assert lb.shape[1] == 39, 'labels require 39 columns each after removing occlusion parameter' |
|
|
else: |
|
|
assert lb.shape[1] == 5, f'labels require 5 columns, {lb.shape[1]} columns detected' |
|
|
assert (lb[:, 1:] <= 1).all(), \ |
|
|
f'non-normalized or out of bounds coordinates {lb[:, 1:][lb[:, 1:] > 1]}' |
|
|
# All labels |
|
|
max_cls = int(lb[:, 0].max()) # max label count |
|
|
assert max_cls <= num_cls, \ |
|
|
f'Label class {max_cls} exceeds dataset class count {num_cls}. ' \ |
|
|
f'Possible class labels are 0-{num_cls - 1}' |
|
|
assert (lb >= 0).all(), f'negative label values {lb[lb < 0]}' |
|
|
_, i = np.unique(lb, axis=0, return_index=True) |
|
|
if len(i) < nl: # duplicate row check |
|
|
lb = lb[i] # remove duplicates |
|
|
if segments: |
|
|
segments = [segments[x] for x in i] |
|
|
msg = f'{prefix}WARNING ⚠️ {im_file}: {nl - len(i)} duplicate labels removed' |
|
|
else: |
|
|
ne = 1 # label empty |
|
|
lb = np.zeros((0, 39), dtype=np.float32) if keypoint else np.zeros((0, 5), dtype=np.float32) |
|
|
else: |
|
|
nm = 1 # label missing |
|
|
lb = np.zeros((0, 39), dtype=np.float32) if keypoint else np.zeros((0, 5), dtype=np.float32) |
|
|
if keypoint: |
|
|
keypoints = lb[:, 5:].reshape(-1, 17, 2) |
|
|
lb = lb[:, :5] |
|
|
return im_file, lb, shape, segments, keypoints, nm, nf, ne, nc, msg |
|
|
except Exception as e: |
|
|
nc = 1 |
|
|
msg = f'{prefix}WARNING ⚠️ {im_file}: ignoring corrupt image/label: {e}' |
|
|
return [None, None, None, None, None, nm, nf, ne, nc, msg] |
|
|
|
|
|
|
|
|
def polygon2mask(imgsz, polygons, color=1, downsample_ratio=1): |
|
|
""" |
|
|
Args: |
|
|
imgsz (tuple): The image size. |
|
|
polygons (np.ndarray): [N, M], N is the number of polygons, M is the number of points(Be divided by 2). |
|
|
color (int): color |
|
|
downsample_ratio (int): downsample ratio |
|
|
""" |
|
|
mask = np.zeros(imgsz, dtype=np.uint8) |
|
|
polygons = np.asarray(polygons) |
|
|
polygons = polygons.astype(np.int32) |
|
|
shape = polygons.shape |
|
|
polygons = polygons.reshape(shape[0], -1, 2) |
|
|
cv2.fillPoly(mask, polygons, color=color) |
|
|
nh, nw = (imgsz[0] // downsample_ratio, imgsz[1] // downsample_ratio) |
|
|
# NOTE: fillPoly firstly then resize is trying the keep the same way |
|
|
# of loss calculation when mask-ratio=1. |
|
|
mask = cv2.resize(mask, (nw, nh)) |
|
|
return mask |
|
|
|
|
|
|
|
|
def polygons2masks(imgsz, polygons, color, downsample_ratio=1): |
|
|
""" |
|
|
Args: |
|
|
imgsz (tuple): The image size. |
|
|
polygons (list[np.ndarray]): each polygon is [N, M], N is number of polygons, M is number of points (M % 2 = 0) |
|
|
color (int): color |
|
|
downsample_ratio (int): downsample ratio |
|
|
""" |
|
|
masks = [] |
|
|
for si in range(len(polygons)): |
|
|
mask = polygon2mask(imgsz, [polygons[si].reshape(-1)], color, downsample_ratio) |
|
|
masks.append(mask) |
|
|
return np.array(masks) |
|
|
|
|
|
|
|
|
def polygons2masks_overlap(imgsz, segments, downsample_ratio=1): |
|
|
"""Return a (640, 640) overlap mask.""" |
|
|
masks = np.zeros((imgsz[0] // downsample_ratio, imgsz[1] // downsample_ratio), |
|
|
dtype=np.int32 if len(segments) > 255 else np.uint8) |
|
|
areas = [] |
|
|
ms = [] |
|
|
for si in range(len(segments)): |
|
|
mask = polygon2mask(imgsz, [segments[si].reshape(-1)], downsample_ratio=downsample_ratio, color=1) |
|
|
ms.append(mask) |
|
|
areas.append(mask.sum()) |
|
|
areas = np.asarray(areas) |
|
|
index = np.argsort(-areas) |
|
|
ms = np.array(ms)[index] |
|
|
for i in range(len(segments)): |
|
|
mask = ms[i] * (i + 1) |
|
|
masks = masks + mask |
|
|
masks = np.clip(masks, a_min=0, a_max=i + 1) |
|
|
return masks, index |
|
|
|
|
|
|
|
|
def check_det_dataset(dataset, autodownload=True): |
|
|
# Download, check and/or unzip dataset if not found locally |
|
|
data = check_file(dataset) |
|
|
|
|
|
# Download (optional) |
|
|
extract_dir = '' |
|
|
if isinstance(data, (str, Path)) and (is_zipfile(data) or is_tarfile(data)): |
|
|
new_dir = safe_download(data, dir=DATASETS_DIR, unzip=True, delete=False, curl=False) |
|
|
data = next((DATASETS_DIR / new_dir).rglob('*.yaml')) |
|
|
extract_dir, autodownload = data.parent, False |
|
|
|
|
|
# Read yaml (optional) |
|
|
if isinstance(data, (str, Path)): |
|
|
data = yaml_load(data, append_filename=True) # dictionary |
|
|
|
|
|
# Checks |
|
|
for k in 'train', 'val': |
|
|
if k not in data: |
|
|
raise SyntaxError( |
|
|
emojis(f"{dataset} '{k}:' key missing ❌.\n'train' and 'val' are required in all data YAMLs.")) |
|
|
if 'names' not in data and 'nc' not in data: |
|
|
raise SyntaxError(emojis(f"{dataset} key missing ❌.\n either 'names' or 'nc' are required in all data YAMLs.")) |
|
|
if 'names' in data and 'nc' in data and len(data['names']) != data['nc']: |
|
|
raise SyntaxError(emojis(f"{dataset} 'names' length {len(data['names'])} and 'nc: {data['nc']}' must match.")) |
|
|
if 'names' not in data: |
|
|
data['names'] = [f'class_{i}' for i in range(data['nc'])] |
|
|
else: |
|
|
data['nc'] = len(data['names']) |
|
|
|
|
|
data['names'] = check_class_names(data['names']) |
|
|
|
|
|
# Resolve paths |
|
|
path = Path(extract_dir or data.get('path') or Path(data.get('yaml_file', '')).parent) # dataset root |
|
|
|
|
|
if not path.is_absolute(): |
|
|
path = (DATASETS_DIR / path).resolve() |
|
|
data['path'] = path # download scripts |
|
|
for k in 'train', 'val', 'test': |
|
|
if data.get(k): # prepend path |
|
|
if isinstance(data[k], str): |
|
|
x = (path / data[k]).resolve() |
|
|
if not x.exists() and data[k].startswith('../'): |
|
|
x = (path / data[k][3:]).resolve() |
|
|
data[k] = str(x) |
|
|
else: |
|
|
data[k] = [str((path / x).resolve()) for x in data[k]] |
|
|
|
|
|
# Parse yaml |
|
|
train, val, test, s = (data.get(x) for x in ('train', 'val', 'test', 'download')) |
|
|
if val: |
|
|
val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path |
|
|
if not all(x.exists() for x in val): |
|
|
name = str(dataset).split('?')[0] # dataset name with URL auth stripped |
|
|
m = f"\nDataset '{name}' images not found ⚠️, missing paths %s" % [str(x) for x in val if not x.exists()] |
|
|
if s and autodownload: |
|
|
LOGGER.warning(m) |
|
|
else: |
|
|
raise FileNotFoundError(m) |
|
|
t = time.time() |
|
|
if s.startswith('http') and s.endswith('.zip'): # URL |
|
|
safe_download(url=s, dir=DATASETS_DIR, delete=True) |
|
|
r = None # success |
|
|
elif s.startswith('bash '): # bash script |
|
|
LOGGER.info(f'Running {s} ...') |
|
|
r = os.system(s) |
|
|
else: # python script |
|
|
r = exec(s, {'yaml': data}) # return None |
|
|
dt = f'({round(time.time() - t, 1)}s)' |
|
|
s = f"success ✅ {dt}, saved to {colorstr('bold', DATASETS_DIR)}" if r in (0, None) else f'failure {dt} ❌' |
|
|
LOGGER.info(f'Dataset download {s}\n') |
|
|
check_font('Arial.ttf' if is_ascii(data['names']) else 'Arial.Unicode.ttf') # download fonts |
|
|
|
|
|
return data # dictionary |
|
|
|
|
|
|
|
|
def check_cls_dataset(dataset: str): |
|
|
""" |
|
|
Check a classification dataset such as Imagenet. |
|
|
|
|
|
Copy code |
|
|
This function takes a `dataset` name as input and returns a dictionary containing information about the dataset. |
|
|
If the dataset is not found, it attempts to download the dataset from the internet and save it to the local file system. |
|
|
|
|
|
Args: |
|
|
dataset (str): Name of the dataset. |
|
|
|
|
|
Returns: |
|
|
data (dict): A dictionary containing the following keys and values: |
|
|
'train': Path object for the directory containing the training set of the dataset |
|
|
'val': Path object for the directory containing the validation set of the dataset |
|
|
'test': Path object for the directory containing the test set of the dataset |
|
|
'nc': Number of classes in the dataset |
|
|
'names': List of class names in the dataset |
|
|
""" |
|
|
data_dir = (DATASETS_DIR / dataset).resolve() |
|
|
if not data_dir.is_dir(): |
|
|
LOGGER.info(f'\nDataset not found ⚠️, missing path {data_dir}, attempting download...') |
|
|
t = time.time() |
|
|
if dataset == 'imagenet': |
|
|
subprocess.run(f"bash {ROOT / 'yolo/data/scripts/get_imagenet.sh'}", shell=True, check=True) |
|
|
else: |
|
|
url = f'https://github.com/ultralytics/yolov5/releases/download/v1.0/{dataset}.zip' |
|
|
download(url, dir=data_dir.parent) |
|
|
s = f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {colorstr('bold', data_dir)}\n" |
|
|
LOGGER.info(s) |
|
|
train_set = data_dir / 'train' |
|
|
val_set = data_dir / 'val' if (data_dir / 'val').exists() else None # data/test or data/val |
|
|
test_set = data_dir / 'test' if (data_dir / 'test').exists() else None # data/val or data/test |
|
|
nc = len([x for x in (data_dir / 'train').glob('*') if x.is_dir()]) # number of classes |
|
|
names = [x.name for x in (data_dir / 'train').iterdir() if x.is_dir()] # class names list |
|
|
names = dict(enumerate(sorted(names))) |
|
|
return {'train': train_set, 'val': val_set, 'test': test_set, 'nc': nc, 'names': names} |
|
|
|
|
|
|
|
|
class HUBDatasetStats(): |
|
|
""" Class for generating HUB dataset JSON and `-hub` dataset directory |
|
|
|
|
|
Arguments |
|
|
path: Path to data.yaml or data.zip (with data.yaml inside data.zip) |
|
|
autodownload: Attempt to download dataset if not found locally |
|
|
|
|
|
Usage |
|
|
from ultralytics.yolo.data.utils import HUBDatasetStats |
|
|
stats = HUBDatasetStats('coco128.yaml', autodownload=True) # usage 1 |
|
|
stats = HUBDatasetStats('/Users/glennjocher/Downloads/coco6.zip') # usage 2 |
|
|
stats.get_json(save=False) |
|
|
stats.process_images() |
|
|
""" |
|
|
|
|
|
def __init__(self, path='coco128.yaml', autodownload=False): |
|
|
# Initialize class |
|
|
zipped, data_dir, yaml_path = self._unzip(Path(path)) |
|
|
try: |
|
|
# data = yaml_load(check_yaml(yaml_path)) # data dict |
|
|
data = check_det_dataset(yaml_path, autodownload) # data dict |
|
|
if zipped: |
|
|
data['path'] = data_dir |
|
|
except Exception as e: |
|
|
raise Exception('error/HUB/dataset_stats/yaml_load') from e |
|
|
|
|
|
self.hub_dir = Path(str(data['path']) + '-hub') |
|
|
self.im_dir = self.hub_dir / 'images' |
|
|
self.im_dir.mkdir(parents=True, exist_ok=True) # makes /images |
|
|
self.stats = {'nc': len(data['names']), 'names': list(data['names'].values())} # statistics dictionary |
|
|
self.data = data |
|
|
|
|
|
@staticmethod |
|
|
def _find_yaml(dir): |
|
|
# Return data.yaml file |
|
|
files = list(dir.glob('*.yaml')) or list(dir.rglob('*.yaml')) # try root level first and then recursive |
|
|
assert files, f'No *.yaml file found in {dir}' |
|
|
if len(files) > 1: |
|
|
files = [f for f in files if f.stem == dir.stem] # prefer *.yaml files that match dir name |
|
|
assert files, f'Multiple *.yaml files found in {dir}, only 1 *.yaml file allowed' |
|
|
assert len(files) == 1, f'Multiple *.yaml files found: {files}, only 1 *.yaml file allowed in {dir}' |
|
|
return files[0] |
|
|
|
|
|
def _unzip(self, path): |
|
|
# Unzip data.zip |
|
|
if not str(path).endswith('.zip'): # path is data.yaml |
|
|
return False, None, path |
|
|
assert Path(path).is_file(), f'Error unzipping {path}, file not found' |
|
|
unzip_file(path, path=path.parent) |
|
|
dir = path.with_suffix('') # dataset directory == zip name |
|
|
assert dir.is_dir(), f'Error unzipping {path}, {dir} not found. path/to/abc.zip MUST unzip to path/to/abc/' |
|
|
return True, str(dir), self._find_yaml(dir) # zipped, data_dir, yaml_path |
|
|
|
|
|
def _hub_ops(self, f, max_dim=1920): |
|
|
# HUB ops for 1 image 'f': resize and save at reduced quality in /dataset-hub for web/app viewing |
|
|
f_new = self.im_dir / Path(f).name # dataset-hub image filename |
|
|
try: # use PIL |
|
|
im = Image.open(f) |
|
|
r = max_dim / max(im.height, im.width) # ratio |
|
|
if r < 1.0: # image too large |
|
|
im = im.resize((int(im.width * r), int(im.height * r))) |
|
|
im.save(f_new, 'JPEG', quality=50, optimize=True) # save |
|
|
except Exception as e: # use OpenCV |
|
|
LOGGER.info(f'WARNING ⚠️ HUB ops PIL failure {f}: {e}') |
|
|
im = cv2.imread(f) |
|
|
im_height, im_width = im.shape[:2] |
|
|
r = max_dim / max(im_height, im_width) # ratio |
|
|
if r < 1.0: # image too large |
|
|
im = cv2.resize(im, (int(im_width * r), int(im_height * r)), interpolation=cv2.INTER_AREA) |
|
|
cv2.imwrite(str(f_new), im) |
|
|
|
|
|
def get_json(self, save=False, verbose=False): |
|
|
# Return dataset JSON for Ultralytics HUB |
|
|
# from ultralytics.yolo.data import YOLODataset |
|
|
from ultralytics.yolo.data.dataloaders.v5loader import LoadImagesAndLabels |
|
|
|
|
|
def _round(labels): |
|
|
# Update labels to integer class and 6 decimal place floats |
|
|
return [[int(c), *(round(x, 4) for x in points)] for c, *points in labels] |
|
|
|
|
|
for split in 'train', 'val', 'test': |
|
|
if self.data.get(split) is None: |
|
|
self.stats[split] = None # i.e. no test set |
|
|
continue |
|
|
dataset = LoadImagesAndLabels(self.data[split]) # load dataset |
|
|
x = np.array([ |
|
|
np.bincount(label[:, 0].astype(int), minlength=self.data['nc']) |
|
|
for label in tqdm(dataset.labels, total=len(dataset), desc='Statistics')]) # shape(128x80) |
|
|
self.stats[split] = { |
|
|
'instance_stats': { |
|
|
'total': int(x.sum()), |
|
|
'per_class': x.sum(0).tolist()}, |
|
|
'image_stats': { |
|
|
'total': len(dataset), |
|
|
'unlabelled': int(np.all(x == 0, 1).sum()), |
|
|
'per_class': (x > 0).sum(0).tolist()}, |
|
|
'labels': [{ |
|
|
str(Path(k).name): _round(v.tolist())} for k, v in zip(dataset.im_files, dataset.labels)]} |
|
|
|
|
|
# Save, print and return |
|
|
if save: |
|
|
stats_path = self.hub_dir / 'stats.json' |
|
|
LOGGER.info(f'Saving {stats_path.resolve()}...') |
|
|
with open(stats_path, 'w') as f: |
|
|
json.dump(self.stats, f) # save stats.json |
|
|
if verbose: |
|
|
LOGGER.info(json.dumps(self.stats, indent=2, sort_keys=False)) |
|
|
return self.stats |
|
|
|
|
|
def process_images(self): |
|
|
# Compress images for Ultralytics HUB |
|
|
# from ultralytics.yolo.data import YOLODataset |
|
|
from ultralytics.yolo.data.dataloaders.v5loader import LoadImagesAndLabels |
|
|
|
|
|
for split in 'train', 'val', 'test': |
|
|
if self.data.get(split) is None: |
|
|
continue |
|
|
dataset = LoadImagesAndLabels(self.data[split]) # load dataset |
|
|
with ThreadPool(NUM_THREADS) as pool: |
|
|
for _ in tqdm(pool.imap(self._hub_ops, dataset.im_files), total=len(dataset), desc=f'{split} images'): |
|
|
pass |
|
|
LOGGER.info(f'Done. All images saved to {self.im_dir}') |
|
|
return self.im_dir
|
|
|
|