|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license |
|
|
""" |
|
|
YOLO-NAS model interface. |
|
|
|
|
|
Usage - Predict: |
|
|
from ultralytics import NAS |
|
|
|
|
|
model = NAS('yolo_nas_s') |
|
|
results = model.predict('ultralytics/assets/bus.jpg') |
|
|
""" |
|
|
|
|
|
from pathlib import Path |
|
|
|
|
|
import torch |
|
|
|
|
|
from ultralytics.yolo.cfg import get_cfg |
|
|
from ultralytics.yolo.engine.exporter import Exporter |
|
|
from ultralytics.yolo.utils import DEFAULT_CFG, DEFAULT_CFG_DICT, LOGGER, ROOT, is_git_dir |
|
|
from ultralytics.yolo.utils.checks import check_imgsz |
|
|
|
|
|
from ...yolo.utils.torch_utils import model_info, smart_inference_mode |
|
|
from .predict import NASPredictor |
|
|
from .val import NASValidator |
|
|
|
|
|
|
|
|
class NAS: |
|
|
|
|
|
def __init__(self, model='yolo_nas_s.pt') -> None: |
|
|
# Load or create new NAS model |
|
|
import super_gradients |
|
|
|
|
|
self.predictor = None |
|
|
suffix = Path(model).suffix |
|
|
if suffix == '.pt': |
|
|
self._load(model) |
|
|
elif suffix == '': |
|
|
self.model = super_gradients.training.models.get(model, pretrained_weights='coco') |
|
|
self.task = 'detect' |
|
|
self.model.args = DEFAULT_CFG_DICT # attach args to model |
|
|
|
|
|
# Standardize model |
|
|
self.model.fuse = lambda verbose=True: self.model |
|
|
self.model.stride = torch.tensor([32]) |
|
|
self.model.names = dict(enumerate(self.model._class_names)) |
|
|
self.model.is_fused = lambda: False # for info() |
|
|
self.model.yaml = {} # for info() |
|
|
self.model.pt_path = model # for export() |
|
|
self.model.task = 'detect' # for export() |
|
|
self.info() |
|
|
|
|
|
@smart_inference_mode() |
|
|
def _load(self, weights: str): |
|
|
self.model = torch.load(weights) |
|
|
|
|
|
@smart_inference_mode() |
|
|
def predict(self, source=None, stream=False, **kwargs): |
|
|
""" |
|
|
Perform prediction using the YOLO model. |
|
|
|
|
|
Args: |
|
|
source (str | int | PIL | np.ndarray): The source of the image to make predictions on. |
|
|
Accepts all source types accepted by the YOLO model. |
|
|
stream (bool): Whether to stream the predictions or not. Defaults to False. |
|
|
**kwargs : Additional keyword arguments passed to the predictor. |
|
|
Check the 'configuration' section in the documentation for all available options. |
|
|
|
|
|
Returns: |
|
|
(List[ultralytics.yolo.engine.results.Results]): The prediction results. |
|
|
""" |
|
|
if source is None: |
|
|
source = ROOT / 'assets' if is_git_dir() else 'https://ultralytics.com/images/bus.jpg' |
|
|
LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using 'source={source}'.") |
|
|
overrides = dict(conf=0.25, task='detect', mode='predict') |
|
|
overrides.update(kwargs) # prefer kwargs |
|
|
if not self.predictor: |
|
|
self.predictor = NASPredictor(overrides=overrides) |
|
|
self.predictor.setup_model(model=self.model) |
|
|
else: # only update args if predictor is already setup |
|
|
self.predictor.args = get_cfg(self.predictor.args, overrides) |
|
|
return self.predictor(source, stream=stream) |
|
|
|
|
|
def train(self, **kwargs): |
|
|
"""Function trains models but raises an error as NAS models do not support training.""" |
|
|
raise NotImplementedError("NAS models don't support training") |
|
|
|
|
|
def val(self, **kwargs): |
|
|
"""Run validation given dataset.""" |
|
|
overrides = dict(task='detect', mode='val') |
|
|
overrides.update(kwargs) # prefer kwargs |
|
|
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides) |
|
|
args.imgsz = check_imgsz(args.imgsz, max_dim=1) |
|
|
validator = NASValidator(args=args) |
|
|
validator(model=self.model) |
|
|
self.metrics = validator.metrics |
|
|
return validator.metrics |
|
|
|
|
|
@smart_inference_mode() |
|
|
def export(self, **kwargs): |
|
|
""" |
|
|
Export model. |
|
|
|
|
|
Args: |
|
|
**kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs |
|
|
""" |
|
|
overrides = dict(task='detect') |
|
|
overrides.update(kwargs) |
|
|
overrides['mode'] = 'export' |
|
|
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides) |
|
|
args.task = self.task |
|
|
if args.imgsz == DEFAULT_CFG.imgsz: |
|
|
args.imgsz = self.model.args['imgsz'] # use trained imgsz unless custom value is passed |
|
|
if args.batch == DEFAULT_CFG.batch: |
|
|
args.batch = 1 # default to 1 if not modified |
|
|
return Exporter(overrides=args)(model=self.model) |
|
|
|
|
|
def info(self, detailed=False, verbose=True): |
|
|
""" |
|
|
Logs model info. |
|
|
|
|
|
Args: |
|
|
detailed (bool): Show detailed information about model. |
|
|
verbose (bool): Controls verbosity. |
|
|
""" |
|
|
return model_info(self.model, detailed=detailed, verbose=verbose, imgsz=640) |
|
|
|
|
|
def __call__(self, source=None, stream=False, **kwargs): |
|
|
"""Calls the 'predict' function with given arguments to perform object detection.""" |
|
|
return self.predict(source, stream, **kwargs) |
|
|
|
|
|
def __getattr__(self, attr): |
|
|
"""Raises error if object has no requested attribute.""" |
|
|
name = self.__class__.__name__ |
|
|
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")
|
|
|
|