|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license |
|
|
|
|
|
import inspect |
|
|
import sys |
|
|
from pathlib import Path |
|
|
from typing import Union |
|
|
|
|
|
from ultralytics.cfg import TASK2DATA, get_cfg, get_save_dir |
|
|
from ultralytics.hub.utils import HUB_WEB_ROOT |
|
|
from ultralytics.nn.tasks import attempt_load_one_weight, guess_model_task, nn, yaml_model_load |
|
|
from ultralytics.utils import ASSETS, DEFAULT_CFG_DICT, LOGGER, RANK, callbacks, checks, emojis, yaml_load |
|
|
|
|
|
|
|
|
class Model(nn.Module): |
|
|
""" |
|
|
A base class to unify APIs for all models. |
|
|
|
|
|
Args: |
|
|
model (str, Path): Path to the model file to load or create. |
|
|
task (Any, optional): Task type for the YOLO model. Defaults to None. |
|
|
|
|
|
Attributes: |
|
|
predictor (Any): The predictor object. |
|
|
model (Any): The model object. |
|
|
trainer (Any): The trainer object. |
|
|
task (str): The type of model task. |
|
|
ckpt (Any): The checkpoint object if the model loaded from *.pt file. |
|
|
cfg (str): The model configuration if loaded from *.yaml file. |
|
|
ckpt_path (str): The checkpoint file path. |
|
|
overrides (dict): Overrides for the trainer object. |
|
|
metrics (Any): The data for metrics. |
|
|
|
|
|
Methods: |
|
|
__call__(source=None, stream=False, **kwargs): |
|
|
Alias for the predict method. |
|
|
_new(cfg:str, verbose:bool=True) -> None: |
|
|
Initializes a new model and infers the task type from the model definitions. |
|
|
_load(weights:str, task:str='') -> None: |
|
|
Initializes a new model and infers the task type from the model head. |
|
|
_check_is_pytorch_model() -> None: |
|
|
Raises TypeError if the model is not a PyTorch model. |
|
|
reset() -> None: |
|
|
Resets the model modules. |
|
|
info(verbose:bool=False) -> None: |
|
|
Logs the model info. |
|
|
fuse() -> None: |
|
|
Fuses the model for faster inference. |
|
|
predict(source=None, stream=False, **kwargs) -> List[ultralytics.engine.results.Results]: |
|
|
Performs prediction using the YOLO model. |
|
|
|
|
|
Returns: |
|
|
list(ultralytics.engine.results.Results): The prediction results. |
|
|
""" |
|
|
|
|
|
def __init__(self, model: Union[str, Path] = 'yolov8n.pt', task=None) -> None: |
|
|
""" |
|
|
Initializes the YOLO model. |
|
|
|
|
|
Args: |
|
|
model (Union[str, Path], optional): Path or name of the model to load or create. Defaults to 'yolov8n.pt'. |
|
|
task (Any, optional): Task type for the YOLO model. Defaults to None. |
|
|
""" |
|
|
super().__init__() |
|
|
self.callbacks = callbacks.get_default_callbacks() |
|
|
self.predictor = None # reuse predictor |
|
|
self.model = None # model object |
|
|
self.trainer = None # trainer object |
|
|
self.ckpt = None # if loaded from *.pt |
|
|
self.cfg = None # if loaded from *.yaml |
|
|
self.ckpt_path = None |
|
|
self.overrides = {} # overrides for trainer object |
|
|
self.metrics = None # validation/training metrics |
|
|
self.session = None # HUB session |
|
|
self.task = task # task type |
|
|
model = str(model).strip() # strip spaces |
|
|
|
|
|
# Check if Ultralytics HUB model from https://hub.ultralytics.com |
|
|
if self.is_hub_model(model): |
|
|
from ultralytics.hub.session import HUBTrainingSession |
|
|
self.session = HUBTrainingSession(model) |
|
|
model = self.session.model_file |
|
|
|
|
|
# Check if Triton Server model |
|
|
elif self.is_triton_model(model): |
|
|
self.model = model |
|
|
self.task = task |
|
|
return |
|
|
|
|
|
# Load or create new YOLO model |
|
|
model = checks.check_model_file_from_stem(model) # add suffix, i.e. yolov8n -> yolov8n.pt |
|
|
if Path(model).suffix in ('.yaml', '.yml'): |
|
|
self._new(model, task) |
|
|
else: |
|
|
self._load(model, task) |
|
|
|
|
|
def __call__(self, source=None, stream=False, **kwargs): |
|
|
"""Calls the predict() method with given arguments to perform object detection.""" |
|
|
return self.predict(source, stream, **kwargs) |
|
|
|
|
|
@staticmethod |
|
|
def is_triton_model(model): |
|
|
"""Is model a Triton Server URL string, i.e. <scheme>://<netloc>/<endpoint>/<task_name>""" |
|
|
from urllib.parse import urlsplit |
|
|
url = urlsplit(model) |
|
|
return url.netloc and url.path and url.scheme in {'http', 'grpc'} |
|
|
|
|
|
@staticmethod |
|
|
def is_hub_model(model): |
|
|
"""Check if the provided model is a HUB model.""" |
|
|
return any(( |
|
|
model.startswith(f'{HUB_WEB_ROOT}/models/'), # i.e. https://hub.ultralytics.com/models/MODEL_ID |
|
|
[len(x) for x in model.split('_')] == [42, 20], # APIKEY_MODELID |
|
|
len(model) == 20 and not Path(model).exists() and all(x not in model for x in './\\'))) # MODELID |
|
|
|
|
|
def _new(self, cfg: str, task=None, model=None, verbose=True): |
|
|
""" |
|
|
Initializes a new model and infers the task type from the model definitions. |
|
|
|
|
|
Args: |
|
|
cfg (str): model configuration file |
|
|
task (str | None): model task |
|
|
model (BaseModel): Customized model. |
|
|
verbose (bool): display model info on load |
|
|
""" |
|
|
cfg_dict = yaml_model_load(cfg) |
|
|
self.cfg = cfg |
|
|
self.task = task or guess_model_task(cfg_dict) |
|
|
self.model = (model or self._smart_load('model'))(cfg_dict, verbose=verbose and RANK == -1) # build model |
|
|
self.overrides['model'] = self.cfg |
|
|
self.overrides['task'] = self.task |
|
|
|
|
|
# Below added to allow export from YAMLs |
|
|
self.model.args = {**DEFAULT_CFG_DICT, **self.overrides} # combine default and model args (prefer model args) |
|
|
self.model.task = self.task |
|
|
|
|
|
def _load(self, weights: str, task=None): |
|
|
""" |
|
|
Initializes a new model and infers the task type from the model head. |
|
|
|
|
|
Args: |
|
|
weights (str): model checkpoint to be loaded |
|
|
task (str | None): model task |
|
|
""" |
|
|
suffix = Path(weights).suffix |
|
|
if suffix == '.pt': |
|
|
self.model, self.ckpt = attempt_load_one_weight(weights) |
|
|
self.task = self.model.args['task'] |
|
|
self.overrides = self.model.args = self._reset_ckpt_args(self.model.args) |
|
|
self.ckpt_path = self.model.pt_path |
|
|
else: |
|
|
weights = checks.check_file(weights) |
|
|
self.model, self.ckpt = weights, None |
|
|
self.task = task or guess_model_task(weights) |
|
|
self.ckpt_path = weights |
|
|
self.overrides['model'] = weights |
|
|
self.overrides['task'] = self.task |
|
|
|
|
|
def _check_is_pytorch_model(self): |
|
|
"""Raises TypeError is model is not a PyTorch model.""" |
|
|
pt_str = isinstance(self.model, (str, Path)) and Path(self.model).suffix == '.pt' |
|
|
pt_module = isinstance(self.model, nn.Module) |
|
|
if not (pt_module or pt_str): |
|
|
raise TypeError( |
|
|
f"model='{self.model}' should be a *.pt PyTorch model to run this method, but is a different format. " |
|
|
f"PyTorch models can train, val, predict and export, i.e. 'model.train(data=...)', but exported " |
|
|
f"formats like ONNX, TensorRT etc. only support 'predict' and 'val' modes, " |
|
|
f"i.e. 'yolo predict model=yolov8n.onnx'.\nTo run CUDA or MPS inference please pass the device " |
|
|
f"argument directly in your inference command, i.e. 'model.predict(source=..., device=0)'") |
|
|
|
|
|
def reset_weights(self): |
|
|
"""Resets the model modules parameters to randomly initialized values, losing all training information.""" |
|
|
self._check_is_pytorch_model() |
|
|
for m in self.model.modules(): |
|
|
if hasattr(m, 'reset_parameters'): |
|
|
m.reset_parameters() |
|
|
for p in self.model.parameters(): |
|
|
p.requires_grad = True |
|
|
return self |
|
|
|
|
|
def load(self, weights='yolov8n.pt'): |
|
|
"""Transfers parameters with matching names and shapes from 'weights' to model.""" |
|
|
self._check_is_pytorch_model() |
|
|
if isinstance(weights, (str, Path)): |
|
|
weights, self.ckpt = attempt_load_one_weight(weights) |
|
|
self.model.load(weights) |
|
|
return self |
|
|
|
|
|
def info(self, detailed=False, verbose=True): |
|
|
""" |
|
|
Logs model info. |
|
|
|
|
|
Args: |
|
|
detailed (bool): Show detailed information about model. |
|
|
verbose (bool): Controls verbosity. |
|
|
""" |
|
|
self._check_is_pytorch_model() |
|
|
return self.model.info(detailed=detailed, verbose=verbose) |
|
|
|
|
|
def fuse(self): |
|
|
"""Fuse PyTorch Conv2d and BatchNorm2d layers.""" |
|
|
self._check_is_pytorch_model() |
|
|
self.model.fuse() |
|
|
|
|
|
def embed(self, source=None, stream=False, **kwargs): |
|
|
""" |
|
|
Calls the predict() method and returns image embeddings. |
|
|
|
|
|
Args: |
|
|
source (str | int | PIL | np.ndarray): The source of the image to make predictions on. |
|
|
Accepts all source types accepted by the YOLO model. |
|
|
stream (bool): Whether to stream the predictions or not. Defaults to False. |
|
|
**kwargs : Additional keyword arguments passed to the predictor. |
|
|
Check the 'configuration' section in the documentation for all available options. |
|
|
|
|
|
Returns: |
|
|
(List[torch.Tensor]): A list of image embeddings. |
|
|
""" |
|
|
if not kwargs.get('embed'): |
|
|
kwargs['embed'] = [len(self.model.model) - 2] # embed second-to-last layer if no indices passed |
|
|
return self.predict(source, stream, **kwargs) |
|
|
|
|
|
def predict(self, source=None, stream=False, predictor=None, **kwargs): |
|
|
""" |
|
|
Perform prediction using the YOLO model. |
|
|
|
|
|
Args: |
|
|
source (str | int | PIL | np.ndarray): The source of the image to make predictions on. |
|
|
Accepts all source types accepted by the YOLO model. |
|
|
stream (bool): Whether to stream the predictions or not. Defaults to False. |
|
|
predictor (BasePredictor): Customized predictor. |
|
|
**kwargs : Additional keyword arguments passed to the predictor. |
|
|
Check the 'configuration' section in the documentation for all available options. |
|
|
|
|
|
Returns: |
|
|
(List[ultralytics.engine.results.Results]): The prediction results. |
|
|
""" |
|
|
if source is None: |
|
|
source = ASSETS |
|
|
LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using 'source={source}'.") |
|
|
|
|
|
is_cli = (sys.argv[0].endswith('yolo') or sys.argv[0].endswith('ultralytics')) and any( |
|
|
x in sys.argv for x in ('predict', 'track', 'mode=predict', 'mode=track')) |
|
|
|
|
|
custom = {'conf': 0.25, 'save': is_cli} # method defaults |
|
|
args = {**self.overrides, **custom, **kwargs, 'mode': 'predict'} # highest priority args on the right |
|
|
prompts = args.pop('prompts', None) # for SAM-type models |
|
|
|
|
|
if not self.predictor: |
|
|
self.predictor = (predictor or self._smart_load('predictor'))(overrides=args, _callbacks=self.callbacks) |
|
|
self.predictor.setup_model(model=self.model, verbose=is_cli) |
|
|
else: # only update args if predictor is already setup |
|
|
self.predictor.args = get_cfg(self.predictor.args, args) |
|
|
if 'project' in args or 'name' in args: |
|
|
self.predictor.save_dir = get_save_dir(self.predictor.args) |
|
|
if prompts and hasattr(self.predictor, 'set_prompts'): # for SAM-type models |
|
|
self.predictor.set_prompts(prompts) |
|
|
return self.predictor.predict_cli(source=source) if is_cli else self.predictor(source=source, stream=stream) |
|
|
|
|
|
def track(self, source=None, stream=False, persist=False, **kwargs): |
|
|
""" |
|
|
Perform object tracking on the input source using the registered trackers. |
|
|
|
|
|
Args: |
|
|
source (str, optional): The input source for object tracking. Can be a file path or a video stream. |
|
|
stream (bool, optional): Whether the input source is a video stream. Defaults to False. |
|
|
persist (bool, optional): Whether to persist the trackers if they already exist. Defaults to False. |
|
|
**kwargs (optional): Additional keyword arguments for the tracking process. |
|
|
|
|
|
Returns: |
|
|
(List[ultralytics.engine.results.Results]): The tracking results. |
|
|
""" |
|
|
if not hasattr(self.predictor, 'trackers'): |
|
|
from ultralytics.trackers import register_tracker |
|
|
register_tracker(self, persist) |
|
|
kwargs['conf'] = kwargs.get('conf') or 0.1 # ByteTrack-based method needs low confidence predictions as input |
|
|
kwargs['mode'] = 'track' |
|
|
return self.predict(source=source, stream=stream, **kwargs) |
|
|
|
|
|
def val(self, validator=None, **kwargs): |
|
|
""" |
|
|
Validate a model on a given dataset. |
|
|
|
|
|
Args: |
|
|
validator (BaseValidator): Customized validator. |
|
|
**kwargs : Any other args accepted by the validators. To see all args check 'configuration' section in docs |
|
|
""" |
|
|
custom = {'rect': True} # method defaults |
|
|
args = {**self.overrides, **custom, **kwargs, 'mode': 'val'} # highest priority args on the right |
|
|
|
|
|
validator = (validator or self._smart_load('validator'))(args=args, _callbacks=self.callbacks) |
|
|
validator(model=self.model) |
|
|
self.metrics = validator.metrics |
|
|
return validator.metrics |
|
|
|
|
|
def benchmark(self, **kwargs): |
|
|
""" |
|
|
Benchmark a model on all export formats. |
|
|
|
|
|
Args: |
|
|
**kwargs : Any other args accepted by the validators. To see all args check 'configuration' section in docs |
|
|
""" |
|
|
self._check_is_pytorch_model() |
|
|
from ultralytics.utils.benchmarks import benchmark |
|
|
|
|
|
custom = {'verbose': False} # method defaults |
|
|
args = {**DEFAULT_CFG_DICT, **self.model.args, **custom, **kwargs, 'mode': 'benchmark'} |
|
|
return benchmark( |
|
|
model=self, |
|
|
data=kwargs.get('data'), # if no 'data' argument passed set data=None for default datasets |
|
|
imgsz=args['imgsz'], |
|
|
half=args['half'], |
|
|
int8=args['int8'], |
|
|
device=args['device'], |
|
|
verbose=kwargs.get('verbose')) |
|
|
|
|
|
def export(self, **kwargs): |
|
|
""" |
|
|
Export model. |
|
|
|
|
|
Args: |
|
|
**kwargs : Any other args accepted by the Exporter. To see all args check 'configuration' section in docs. |
|
|
""" |
|
|
self._check_is_pytorch_model() |
|
|
from .exporter import Exporter |
|
|
|
|
|
custom = {'imgsz': self.model.args['imgsz'], 'batch': 1, 'data': None, 'verbose': False} # method defaults |
|
|
args = {**self.overrides, **custom, **kwargs, 'mode': 'export'} # highest priority args on the right |
|
|
return Exporter(overrides=args, _callbacks=self.callbacks)(model=self.model) |
|
|
|
|
|
def train(self, trainer=None, **kwargs): |
|
|
""" |
|
|
Trains the model on a given dataset. |
|
|
|
|
|
Args: |
|
|
trainer (BaseTrainer, optional): Customized trainer. |
|
|
**kwargs (Any): Any number of arguments representing the training configuration. |
|
|
""" |
|
|
self._check_is_pytorch_model() |
|
|
if self.session: # Ultralytics HUB session |
|
|
if any(kwargs): |
|
|
LOGGER.warning('WARNING ⚠️ using HUB training arguments, ignoring local training arguments.') |
|
|
kwargs = self.session.train_args |
|
|
checks.check_pip_update_available() |
|
|
|
|
|
overrides = yaml_load(checks.check_yaml(kwargs['cfg'])) if kwargs.get('cfg') else self.overrides |
|
|
custom = {'data': DEFAULT_CFG_DICT['data'] or TASK2DATA[self.task]} # method defaults |
|
|
args = {**overrides, **custom, **kwargs, 'mode': 'train'} # highest priority args on the right |
|
|
if args.get('resume'): |
|
|
args['resume'] = self.ckpt_path |
|
|
|
|
|
self.trainer = (trainer or self._smart_load('trainer'))(overrides=args, _callbacks=self.callbacks) |
|
|
if not args.get('resume'): # manually set model only if not resuming |
|
|
self.trainer.model = self.trainer.get_model(weights=self.model if self.ckpt else None, cfg=self.model.yaml) |
|
|
self.model = self.trainer.model |
|
|
self.trainer.hub_session = self.session # attach optional HUB session |
|
|
self.trainer.train() |
|
|
# Update model and cfg after training |
|
|
if RANK in (-1, 0): |
|
|
ckpt = self.trainer.best if self.trainer.best.exists() else self.trainer.last |
|
|
self.model, _ = attempt_load_one_weight(ckpt) |
|
|
self.overrides = self.model.args |
|
|
self.metrics = getattr(self.trainer.validator, 'metrics', None) # TODO: no metrics returned by DDP |
|
|
return self.metrics |
|
|
|
|
|
def tune(self, use_ray=False, iterations=10, *args, **kwargs): |
|
|
""" |
|
|
Runs hyperparameter tuning, optionally using Ray Tune. See ultralytics.utils.tuner.run_ray_tune for Args. |
|
|
|
|
|
Returns: |
|
|
(dict): A dictionary containing the results of the hyperparameter search. |
|
|
""" |
|
|
self._check_is_pytorch_model() |
|
|
if use_ray: |
|
|
from ultralytics.utils.tuner import run_ray_tune |
|
|
return run_ray_tune(self, max_samples=iterations, *args, **kwargs) |
|
|
else: |
|
|
from .tuner import Tuner |
|
|
|
|
|
custom = {} # method defaults |
|
|
args = {**self.overrides, **custom, **kwargs, 'mode': 'train'} # highest priority args on the right |
|
|
return Tuner(args=args, _callbacks=self.callbacks)(model=self, iterations=iterations) |
|
|
|
|
|
def _apply(self, fn): |
|
|
"""Apply to(), cpu(), cuda(), half(), float() to model tensors that are not parameters or registered buffers.""" |
|
|
self._check_is_pytorch_model() |
|
|
self = super()._apply(fn) # noqa |
|
|
self.predictor = None # reset predictor as device may have changed |
|
|
self.overrides['device'] = self.device # was str(self.device) i.e. device(type='cuda', index=0) -> 'cuda:0' |
|
|
return self |
|
|
|
|
|
@property |
|
|
def names(self): |
|
|
"""Returns class names of the loaded model.""" |
|
|
return self.model.names if hasattr(self.model, 'names') else None |
|
|
|
|
|
@property |
|
|
def device(self): |
|
|
"""Returns device if PyTorch model.""" |
|
|
return next(self.model.parameters()).device if isinstance(self.model, nn.Module) else None |
|
|
|
|
|
@property |
|
|
def transforms(self): |
|
|
"""Returns transform of the loaded model.""" |
|
|
return self.model.transforms if hasattr(self.model, 'transforms') else None |
|
|
|
|
|
def add_callback(self, event: str, func): |
|
|
"""Add a callback.""" |
|
|
self.callbacks[event].append(func) |
|
|
|
|
|
def clear_callback(self, event: str): |
|
|
"""Clear all event callbacks.""" |
|
|
self.callbacks[event] = [] |
|
|
|
|
|
def reset_callbacks(self): |
|
|
"""Reset all registered callbacks.""" |
|
|
for event in callbacks.default_callbacks.keys(): |
|
|
self.callbacks[event] = [callbacks.default_callbacks[event][0]] |
|
|
|
|
|
@staticmethod |
|
|
def _reset_ckpt_args(args): |
|
|
"""Reset arguments when loading a PyTorch model.""" |
|
|
include = {'imgsz', 'data', 'task', 'single_cls'} # only remember these arguments when loading a PyTorch model |
|
|
return {k: v for k, v in args.items() if k in include} |
|
|
|
|
|
# def __getattr__(self, attr): |
|
|
# """Raises error if object has no requested attribute.""" |
|
|
# name = self.__class__.__name__ |
|
|
# raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}") |
|
|
|
|
|
def _smart_load(self, key): |
|
|
"""Load model/trainer/validator/predictor.""" |
|
|
try: |
|
|
return self.task_map[self.task][key] |
|
|
except Exception as e: |
|
|
name = self.__class__.__name__ |
|
|
mode = inspect.stack()[1][3] # get the function name. |
|
|
raise NotImplementedError( |
|
|
emojis(f"WARNING ⚠️ '{name}' model does not support '{mode}' mode for '{self.task}' task yet.")) from e |
|
|
|
|
|
@property |
|
|
def task_map(self): |
|
|
""" |
|
|
Map head to model, trainer, validator, and predictor classes. |
|
|
|
|
|
Returns: |
|
|
task_map (dict): The map of model task to mode classes. |
|
|
""" |
|
|
raise NotImplementedError('Please provide task map for your model!')
|
|
|
|