You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
121 lines
7.6 KiB
121 lines
7.6 KiB
# Ultralytics YOLO 🚀, AGPL-3.0 license |
|
# Default training settings and hyperparameters for medium-augmentation COCO training |
|
|
|
task: detect # (str) YOLO task, i.e. detect, segment, classify, pose |
|
mode: train # (str) YOLO mode, i.e. train, val, predict, export, track, benchmark |
|
|
|
# Train settings ------------------------------------------------------------------------------------------------------- |
|
model: # (str, optional) path to model file, i.e. yolov8n.pt, yolov8n.yaml |
|
data: # (str, optional) path to data file, i.e. coco128.yaml |
|
epochs: 100 # (int) number of epochs to train for |
|
time: # (float, optional) number of hours to train for, overrides epochs if supplied |
|
patience: 50 # (int) epochs to wait for no observable improvement for early stopping of training |
|
batch: 16 # (int) number of images per batch (-1 for AutoBatch) |
|
imgsz: 640 # (int | list) input images size as int for train and val modes, or list[w,h] for predict and export modes |
|
save: True # (bool) save train checkpoints and predict results |
|
save_period: -1 # (int) Save checkpoint every x epochs (disabled if < 1) |
|
cache: False # (bool) True/ram, disk or False. Use cache for data loading |
|
device: # (int | str | list, optional) device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu |
|
workers: 8 # (int) number of worker threads for data loading (per RANK if DDP) |
|
project: # (str, optional) project name |
|
name: # (str, optional) experiment name, results saved to 'project/name' directory |
|
exist_ok: False # (bool) whether to overwrite existing experiment |
|
pretrained: True # (bool | str) whether to use a pretrained model (bool) or a model to load weights from (str) |
|
optimizer: auto # (str) optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto] |
|
verbose: True # (bool) whether to print verbose output |
|
seed: 0 # (int) random seed for reproducibility |
|
deterministic: True # (bool) whether to enable deterministic mode |
|
single_cls: False # (bool) train multi-class data as single-class |
|
rect: False # (bool) rectangular training if mode='train' or rectangular validation if mode='val' |
|
cos_lr: False # (bool) use cosine learning rate scheduler |
|
close_mosaic: 10 # (int) disable mosaic augmentation for final epochs (0 to disable) |
|
resume: False # (bool) resume training from last checkpoint |
|
amp: True # (bool) Automatic Mixed Precision (AMP) training, choices=[True, False], True runs AMP check |
|
fraction: 1.0 # (float) dataset fraction to train on (default is 1.0, all images in train set) |
|
profile: False # (bool) profile ONNX and TensorRT speeds during training for loggers |
|
freeze: None # (int | list, optional) freeze first n layers, or freeze list of layer indices during training |
|
# Segmentation |
|
overlap_mask: True # (bool) masks should overlap during training (segment train only) |
|
mask_ratio: 4 # (int) mask downsample ratio (segment train only) |
|
# Classification |
|
dropout: 0.0 # (float) use dropout regularization (classify train only) |
|
|
|
# Val/Test settings ---------------------------------------------------------------------------------------------------- |
|
val: True # (bool) validate/test during training |
|
split: val # (str) dataset split to use for validation, i.e. 'val', 'test' or 'train' |
|
save_json: False # (bool) save results to JSON file |
|
save_hybrid: False # (bool) save hybrid version of labels (labels + additional predictions) |
|
conf: # (float, optional) object confidence threshold for detection (default 0.25 predict, 0.001 val) |
|
iou: 0.7 # (float) intersection over union (IoU) threshold for NMS |
|
max_det: 300 # (int) maximum number of detections per image |
|
half: False # (bool) use half precision (FP16) |
|
dnn: False # (bool) use OpenCV DNN for ONNX inference |
|
plots: True # (bool) save plots and images during train/val |
|
|
|
# Predict settings ----------------------------------------------------------------------------------------------------- |
|
source: # (str, optional) source directory for images or videos |
|
vid_stride: 1 # (int) video frame-rate stride |
|
stream_buffer: False # (bool) buffer all streaming frames (True) or return the most recent frame (False) |
|
visualize: False # (bool) visualize model features |
|
augment: False # (bool) apply image augmentation to prediction sources |
|
agnostic_nms: False # (bool) class-agnostic NMS |
|
classes: # (int | list[int], optional) filter results by class, i.e. classes=0, or classes=[0,2,3] |
|
retina_masks: False # (bool) use high-resolution segmentation masks |
|
embed: # (list[int], optional) return feature vectors/embeddings from given layers |
|
|
|
# Visualize settings --------------------------------------------------------------------------------------------------- |
|
show: False # (bool) show predicted images and videos if environment allows |
|
save_frames: False # (bool) save predicted individual video frames |
|
save_txt: False # (bool) save results as .txt file |
|
save_conf: False # (bool) save results with confidence scores |
|
save_crop: False # (bool) save cropped images with results |
|
show_labels: True # (bool) show prediction labels, i.e. 'person' |
|
show_conf: True # (bool) show prediction confidence, i.e. '0.99' |
|
show_boxes: True # (bool) show prediction boxes |
|
line_width: # (int, optional) line width of the bounding boxes. Scaled to image size if None. |
|
|
|
# Export settings ------------------------------------------------------------------------------------------------------ |
|
format: torchscript # (str) format to export to, choices at https://docs.ultralytics.com/modes/export/#export-formats |
|
keras: False # (bool) use Kera=s |
|
optimize: False # (bool) TorchScript: optimize for mobile |
|
int8: False # (bool) CoreML/TF INT8 quantization |
|
dynamic: False # (bool) ONNX/TF/TensorRT: dynamic axes |
|
simplify: False # (bool) ONNX: simplify model |
|
opset: # (int, optional) ONNX: opset version |
|
workspace: 4 # (int) TensorRT: workspace size (GB) |
|
nms: False # (bool) CoreML: add NMS |
|
|
|
# Hyperparameters ------------------------------------------------------------------------------------------------------ |
|
lr0: 0.01 # (float) initial learning rate (i.e. SGD=1E-2, Adam=1E-3) |
|
lrf: 0.01 # (float) final learning rate (lr0 * lrf) |
|
momentum: 0.937 # (float) SGD momentum/Adam beta1 |
|
weight_decay: 0.0005 # (float) optimizer weight decay 5e-4 |
|
warmup_epochs: 3.0 # (float) warmup epochs (fractions ok) |
|
warmup_momentum: 0.8 # (float) warmup initial momentum |
|
warmup_bias_lr: 0.1 # (float) warmup initial bias lr |
|
box: 7.5 # (float) box loss gain |
|
cls: 0.5 # (float) cls loss gain (scale with pixels) |
|
dfl: 1.5 # (float) dfl loss gain |
|
pose: 12.0 # (float) pose loss gain |
|
kobj: 1.0 # (float) keypoint obj loss gain |
|
label_smoothing: 0.0 # (float) label smoothing (fraction) |
|
nbs: 64 # (int) nominal batch size |
|
hsv_h: 0.015 # (float) image HSV-Hue augmentation (fraction) |
|
hsv_s: 0.7 # (float) image HSV-Saturation augmentation (fraction) |
|
hsv_v: 0.4 # (float) image HSV-Value augmentation (fraction) |
|
degrees: 0.0 # (float) image rotation (+/- deg) |
|
translate: 0.1 # (float) image translation (+/- fraction) |
|
scale: 0.5 # (float) image scale (+/- gain) |
|
shear: 0.0 # (float) image shear (+/- deg) |
|
perspective: 0.0 # (float) image perspective (+/- fraction), range 0-0.001 |
|
flipud: 0.0 # (float) image flip up-down (probability) |
|
fliplr: 0.5 # (float) image flip left-right (probability) |
|
mosaic: 1.0 # (float) image mosaic (probability) |
|
mixup: 0.0 # (float) image mixup (probability) |
|
copy_paste: 0.0 # (float) segment copy-paste (probability) |
|
|
|
# Custom config.yaml --------------------------------------------------------------------------------------------------- |
|
cfg: # (str, optional) for overriding defaults.yaml |
|
|
|
# Tracker settings ------------------------------------------------------------------------------------------------------ |
|
tracker: botsort.yaml # (str) tracker type, choices=[botsort.yaml, bytetrack.yaml]
|
|
|