You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
115 lines
5.3 KiB
115 lines
5.3 KiB
# Ultralytics YOLO 🚀, GPL-3.0 license |
|
|
|
import torch |
|
|
|
from ultralytics.yolo.engine.results import Results |
|
from ultralytics.yolo.utils import DEFAULT_CFG, ROOT, ops |
|
from ultralytics.yolo.utils.plotting import colors, save_one_box |
|
from ultralytics.yolo.v8.detect.predict import DetectionPredictor |
|
|
|
|
|
class SegmentationPredictor(DetectionPredictor): |
|
|
|
def postprocess(self, preds, img, orig_imgs): |
|
# TODO: filter by classes |
|
p = ops.non_max_suppression(preds[0], |
|
self.args.conf, |
|
self.args.iou, |
|
agnostic=self.args.agnostic_nms, |
|
max_det=self.args.max_det, |
|
nc=len(self.model.names), |
|
classes=self.args.classes) |
|
results = [] |
|
proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported |
|
for i, pred in enumerate(p): |
|
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs |
|
shape = orig_img.shape |
|
path, _, _, _, _ = self.batch |
|
img_path = path[i] if isinstance(path, list) else path |
|
if not len(pred): # save empty boxes |
|
results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6])) |
|
continue |
|
if self.args.retina_masks: |
|
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round() |
|
masks = ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], shape[:2]) # HWC |
|
else: |
|
masks = ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True) # HWC |
|
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round() |
|
results.append( |
|
Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], masks=masks)) |
|
return results |
|
|
|
def write_results(self, idx, results, batch): |
|
p, im, im0 = batch |
|
log_string = '' |
|
if len(im.shape) == 3: |
|
im = im[None] # expand for batch dim |
|
self.seen += 1 |
|
imc = im0.copy() if self.args.save_crop else im0 |
|
if self.source_type.webcam or self.source_type.from_img: # batch_size >= 1 |
|
log_string += f'{idx}: ' |
|
frame = self.dataset.count |
|
else: |
|
frame = getattr(self.dataset, 'frame', 0) |
|
|
|
self.data_path = p |
|
self.txt_path = str(self.save_dir / 'labels' / p.stem) + ('' if self.dataset.mode == 'image' else f'_{frame}') |
|
log_string += '%gx%g ' % im.shape[2:] # print string |
|
self.annotator = self.get_annotator(im0) |
|
|
|
result = results[idx] |
|
if len(result) == 0: |
|
return f'{log_string}(no detections), ' |
|
det, mask = result.boxes, result.masks # getting tensors TODO: mask mask,box inherit for tensor |
|
|
|
# Print results |
|
for c in det.cls.unique(): |
|
n = (det.cls == c).sum() # detections per class |
|
log_string += f"{n} {self.model.names[int(c)]}{'s' * (n > 1)}, " |
|
|
|
# Mask plotting |
|
if self.args.save or self.args.show: |
|
im_gpu = torch.as_tensor(im0, dtype=torch.float16, device=mask.masks.device).permute( |
|
2, 0, 1).flip(0).contiguous() / 255 if self.args.retina_masks else im[idx] |
|
self.annotator.masks(masks=mask.masks, colors=[colors(x, True) for x in det.cls], im_gpu=im_gpu) |
|
|
|
# Write results |
|
for j, d in enumerate(reversed(det)): |
|
cls, conf = d.cls.squeeze(), d.conf.squeeze() |
|
if self.args.save_txt: # Write to file |
|
seg = mask.segments[len(det) - j - 1].copy() # reversed mask.segments |
|
seg = seg.reshape(-1) # (n,2) to (n*2) |
|
line = (cls, *seg, conf) if self.args.save_conf else (cls, *seg) # label format |
|
with open(f'{self.txt_path}.txt', 'a') as f: |
|
f.write(('%g ' * len(line)).rstrip() % line + '\n') |
|
|
|
if self.args.save or self.args.save_crop or self.args.show: # Add bbox to image |
|
c = int(cls) # integer class |
|
name = f'id:{int(d.id.item())} {self.model.names[c]}' if d.id is not None else self.model.names[c] |
|
label = None if self.args.hide_labels else (name if self.args.hide_conf else f'{name} {conf:.2f}') |
|
self.annotator.box_label(d.xyxy.squeeze(), label, color=colors(c, True)) if self.args.boxes else None |
|
if self.args.save_crop: |
|
save_one_box(d.xyxy, |
|
imc, |
|
file=self.save_dir / 'crops' / self.model.model.names[c] / f'{self.data_path.stem}.jpg', |
|
BGR=True) |
|
|
|
return log_string |
|
|
|
|
|
def predict(cfg=DEFAULT_CFG, use_python=False): |
|
model = cfg.model or 'yolov8n-seg.pt' |
|
source = cfg.source if cfg.source is not None else ROOT / 'assets' if (ROOT / 'assets').exists() \ |
|
else 'https://ultralytics.com/images/bus.jpg' |
|
|
|
args = dict(model=model, source=source) |
|
if use_python: |
|
from ultralytics import YOLO |
|
YOLO(model)(**args) |
|
else: |
|
predictor = SegmentationPredictor(overrides=args) |
|
predictor.predict_cli() |
|
|
|
|
|
if __name__ == '__main__': |
|
predict()
|
|
|