You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
66 lines
2.3 KiB
66 lines
2.3 KiB
# Ultralytics YOLO 🚀, GPL-3.0 license |
|
|
|
from ultralytics.yolo.data import build_classification_dataloader |
|
from ultralytics.yolo.engine.validator import BaseValidator |
|
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER |
|
from ultralytics.yolo.utils.metrics import ClassifyMetrics |
|
|
|
|
|
class ClassificationValidator(BaseValidator): |
|
|
|
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None): |
|
super().__init__(dataloader, save_dir, pbar, args) |
|
self.args.task = 'classify' |
|
self.metrics = ClassifyMetrics() |
|
|
|
def get_desc(self): |
|
return ('%22s' + '%11s' * 2) % ('classes', 'top1_acc', 'top5_acc') |
|
|
|
def init_metrics(self, model): |
|
self.pred = [] |
|
self.targets = [] |
|
|
|
def preprocess(self, batch): |
|
batch['img'] = batch['img'].to(self.device, non_blocking=True) |
|
batch['img'] = batch['img'].half() if self.args.half else batch['img'].float() |
|
batch['cls'] = batch['cls'].to(self.device) |
|
return batch |
|
|
|
def update_metrics(self, preds, batch): |
|
n5 = min(len(self.model.names), 5) |
|
self.pred.append(preds.argsort(1, descending=True)[:, :n5]) |
|
self.targets.append(batch['cls']) |
|
|
|
def finalize_metrics(self, *args, **kwargs): |
|
self.metrics.speed = self.speed |
|
|
|
def get_stats(self): |
|
self.metrics.process(self.targets, self.pred) |
|
return self.metrics.results_dict |
|
|
|
def get_dataloader(self, dataset_path, batch_size): |
|
return build_classification_dataloader(path=dataset_path, |
|
imgsz=self.args.imgsz, |
|
batch_size=batch_size, |
|
workers=self.args.workers) |
|
|
|
def print_results(self): |
|
pf = '%22s' + '%11.3g' * len(self.metrics.keys) # print format |
|
LOGGER.info(pf % ('all', self.metrics.top1, self.metrics.top5)) |
|
|
|
|
|
def val(cfg=DEFAULT_CFG, use_python=False): |
|
model = cfg.model or 'yolov8n-cls.pt' # or "resnet18" |
|
data = cfg.data or 'mnist160' |
|
|
|
args = dict(model=model, data=data) |
|
if use_python: |
|
from ultralytics import YOLO |
|
YOLO(model).val(**args) |
|
else: |
|
validator = ClassificationValidator(args=args) |
|
validator(model=args['model']) |
|
|
|
|
|
if __name__ == '__main__': |
|
val()
|
|
|