You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
247 lines
12 KiB
247 lines
12 KiB
# Ultralytics YOLO 🚀, AGPL-3.0 license |
|
|
|
from multiprocessing.pool import ThreadPool |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
from ultralytics.models.yolo.detect import DetectionValidator |
|
from ultralytics.utils import LOGGER, NUM_THREADS, ops |
|
from ultralytics.utils.checks import check_requirements |
|
from ultralytics.utils.metrics import SegmentMetrics, box_iou, mask_iou |
|
from ultralytics.utils.plotting import output_to_target, plot_images |
|
|
|
|
|
class SegmentationValidator(DetectionValidator): |
|
""" |
|
A class extending the DetectionValidator class for validation based on a segmentation model. |
|
|
|
Example: |
|
```python |
|
from ultralytics.models.yolo.segment import SegmentationValidator |
|
|
|
args = dict(model='yolov8n-seg.pt', data='coco8-seg.yaml') |
|
validator = SegmentationValidator(args=args) |
|
validator() |
|
``` |
|
""" |
|
|
|
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None): |
|
"""Initialize SegmentationValidator and set task to 'segment', metrics to SegmentMetrics.""" |
|
super().__init__(dataloader, save_dir, pbar, args, _callbacks) |
|
self.plot_masks = None |
|
self.process = None |
|
self.args.task = 'segment' |
|
self.metrics = SegmentMetrics(save_dir=self.save_dir, on_plot=self.on_plot) |
|
|
|
def preprocess(self, batch): |
|
"""Preprocesses batch by converting masks to float and sending to device.""" |
|
batch = super().preprocess(batch) |
|
batch['masks'] = batch['masks'].to(self.device).float() |
|
return batch |
|
|
|
def init_metrics(self, model): |
|
"""Initialize metrics and select mask processing function based on save_json flag.""" |
|
super().init_metrics(model) |
|
self.plot_masks = [] |
|
if self.args.save_json: |
|
check_requirements('pycocotools>=2.0.6') |
|
self.process = ops.process_mask_upsample # more accurate |
|
else: |
|
self.process = ops.process_mask # faster |
|
|
|
def get_desc(self): |
|
"""Return a formatted description of evaluation metrics.""" |
|
return ('%22s' + '%11s' * 10) % ('Class', 'Images', 'Instances', 'Box(P', 'R', 'mAP50', 'mAP50-95)', 'Mask(P', |
|
'R', 'mAP50', 'mAP50-95)') |
|
|
|
def postprocess(self, preds): |
|
"""Post-processes YOLO predictions and returns output detections with proto.""" |
|
p = ops.non_max_suppression(preds[0], |
|
self.args.conf, |
|
self.args.iou, |
|
labels=self.lb, |
|
multi_label=True, |
|
agnostic=self.args.single_cls, |
|
max_det=self.args.max_det, |
|
nc=self.nc) |
|
proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported |
|
return p, proto |
|
|
|
def update_metrics(self, preds, batch): |
|
"""Metrics.""" |
|
for si, (pred, proto) in enumerate(zip(preds[0], preds[1])): |
|
idx = batch['batch_idx'] == si |
|
cls = batch['cls'][idx] |
|
bbox = batch['bboxes'][idx] |
|
nl, npr = cls.shape[0], pred.shape[0] # number of labels, predictions |
|
shape = batch['ori_shape'][si] |
|
correct_masks = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init |
|
correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init |
|
self.seen += 1 |
|
|
|
if npr == 0: |
|
if nl: |
|
self.stats.append((correct_bboxes, correct_masks, *torch.zeros( |
|
(2, 0), device=self.device), cls.squeeze(-1))) |
|
if self.args.plots: |
|
self.confusion_matrix.process_batch(detections=None, labels=cls.squeeze(-1)) |
|
continue |
|
|
|
# Masks |
|
midx = [si] if self.args.overlap_mask else idx |
|
gt_masks = batch['masks'][midx] |
|
pred_masks = self.process(proto, pred[:, 6:], pred[:, :4], shape=batch['img'][si].shape[1:]) |
|
|
|
# Predictions |
|
if self.args.single_cls: |
|
pred[:, 5] = 0 |
|
predn = pred.clone() |
|
ops.scale_boxes(batch['img'][si].shape[1:], predn[:, :4], shape, |
|
ratio_pad=batch['ratio_pad'][si]) # native-space pred |
|
|
|
# Evaluate |
|
if nl: |
|
height, width = batch['img'].shape[2:] |
|
tbox = ops.xywh2xyxy(bbox) * torch.tensor( |
|
(width, height, width, height), device=self.device) # target boxes |
|
ops.scale_boxes(batch['img'][si].shape[1:], tbox, shape, |
|
ratio_pad=batch['ratio_pad'][si]) # native-space labels |
|
labelsn = torch.cat((cls, tbox), 1) # native-space labels |
|
correct_bboxes = self._process_batch(predn, labelsn) |
|
# TODO: maybe remove these `self.` arguments as they already are member variable |
|
correct_masks = self._process_batch(predn, |
|
labelsn, |
|
pred_masks, |
|
gt_masks, |
|
overlap=self.args.overlap_mask, |
|
masks=True) |
|
if self.args.plots: |
|
self.confusion_matrix.process_batch(predn, labelsn) |
|
|
|
# Append correct_masks, correct_boxes, pconf, pcls, tcls |
|
self.stats.append((correct_bboxes, correct_masks, pred[:, 4], pred[:, 5], cls.squeeze(-1))) |
|
|
|
pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8) |
|
if self.args.plots and self.batch_i < 3: |
|
self.plot_masks.append(pred_masks[:15].cpu()) # filter top 15 to plot |
|
|
|
# Save |
|
if self.args.save_json: |
|
pred_masks = ops.scale_image(pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(), |
|
shape, |
|
ratio_pad=batch['ratio_pad'][si]) |
|
self.pred_to_json(predn, batch['im_file'][si], pred_masks) |
|
# if self.args.save_txt: |
|
# save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt') |
|
|
|
def finalize_metrics(self, *args, **kwargs): |
|
"""Sets speed and confusion matrix for evaluation metrics.""" |
|
self.metrics.speed = self.speed |
|
self.metrics.confusion_matrix = self.confusion_matrix |
|
|
|
def _process_batch(self, detections, labels, pred_masks=None, gt_masks=None, overlap=False, masks=False): |
|
""" |
|
Return correct prediction matrix. |
|
|
|
Args: |
|
detections (array[N, 6]), x1, y1, x2, y2, conf, class |
|
labels (array[M, 5]), class, x1, y1, x2, y2 |
|
|
|
Returns: |
|
correct (array[N, 10]), for 10 IoU levels |
|
""" |
|
if masks: |
|
if overlap: |
|
nl = len(labels) |
|
index = torch.arange(nl, device=gt_masks.device).view(nl, 1, 1) + 1 |
|
gt_masks = gt_masks.repeat(nl, 1, 1) # shape(1,640,640) -> (n,640,640) |
|
gt_masks = torch.where(gt_masks == index, 1.0, 0.0) |
|
if gt_masks.shape[1:] != pred_masks.shape[1:]: |
|
gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode='bilinear', align_corners=False)[0] |
|
gt_masks = gt_masks.gt_(0.5) |
|
iou = mask_iou(gt_masks.view(gt_masks.shape[0], -1), pred_masks.view(pred_masks.shape[0], -1)) |
|
else: # boxes |
|
iou = box_iou(labels[:, 1:], detections[:, :4]) |
|
|
|
return self.match_predictions(detections[:, 5], labels[:, 0], iou) |
|
|
|
def plot_val_samples(self, batch, ni): |
|
"""Plots validation samples with bounding box labels.""" |
|
plot_images(batch['img'], |
|
batch['batch_idx'], |
|
batch['cls'].squeeze(-1), |
|
batch['bboxes'], |
|
batch['masks'], |
|
paths=batch['im_file'], |
|
fname=self.save_dir / f'val_batch{ni}_labels.jpg', |
|
names=self.names, |
|
on_plot=self.on_plot) |
|
|
|
def plot_predictions(self, batch, preds, ni): |
|
"""Plots batch predictions with masks and bounding boxes.""" |
|
plot_images( |
|
batch['img'], |
|
*output_to_target(preds[0], max_det=15), # not set to self.args.max_det due to slow plotting speed |
|
torch.cat(self.plot_masks, dim=0) if len(self.plot_masks) else self.plot_masks, |
|
paths=batch['im_file'], |
|
fname=self.save_dir / f'val_batch{ni}_pred.jpg', |
|
names=self.names, |
|
on_plot=self.on_plot) # pred |
|
self.plot_masks.clear() |
|
|
|
def pred_to_json(self, predn, filename, pred_masks): |
|
"""Save one JSON result.""" |
|
# Example result = {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236} |
|
from pycocotools.mask import encode # noqa |
|
|
|
def single_encode(x): |
|
"""Encode predicted masks as RLE and append results to jdict.""" |
|
rle = encode(np.asarray(x[:, :, None], order='F', dtype='uint8'))[0] |
|
rle['counts'] = rle['counts'].decode('utf-8') |
|
return rle |
|
|
|
stem = Path(filename).stem |
|
image_id = int(stem) if stem.isnumeric() else stem |
|
box = ops.xyxy2xywh(predn[:, :4]) # xywh |
|
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner |
|
pred_masks = np.transpose(pred_masks, (2, 0, 1)) |
|
with ThreadPool(NUM_THREADS) as pool: |
|
rles = pool.map(single_encode, pred_masks) |
|
for i, (p, b) in enumerate(zip(predn.tolist(), box.tolist())): |
|
self.jdict.append({ |
|
'image_id': image_id, |
|
'category_id': self.class_map[int(p[5])], |
|
'bbox': [round(x, 3) for x in b], |
|
'score': round(p[4], 5), |
|
'segmentation': rles[i]}) |
|
|
|
def eval_json(self, stats): |
|
"""Return COCO-style object detection evaluation metrics.""" |
|
if self.args.save_json and self.is_coco and len(self.jdict): |
|
anno_json = self.data['path'] / 'annotations/instances_val2017.json' # annotations |
|
pred_json = self.save_dir / 'predictions.json' # predictions |
|
LOGGER.info(f'\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...') |
|
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb |
|
check_requirements('pycocotools>=2.0.6') |
|
from pycocotools.coco import COCO # noqa |
|
from pycocotools.cocoeval import COCOeval # noqa |
|
|
|
for x in anno_json, pred_json: |
|
assert x.is_file(), f'{x} file not found' |
|
anno = COCO(str(anno_json)) # init annotations api |
|
pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path) |
|
for i, eval in enumerate([COCOeval(anno, pred, 'bbox'), COCOeval(anno, pred, 'segm')]): |
|
if self.is_coco: |
|
eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] # im to eval |
|
eval.evaluate() |
|
eval.accumulate() |
|
eval.summarize() |
|
idx = i * 4 + 2 |
|
stats[self.metrics.keys[idx + 1]], stats[ |
|
self.metrics.keys[idx]] = eval.stats[:2] # update mAP50-95 and mAP50 |
|
except Exception as e: |
|
LOGGER.warning(f'pycocotools unable to run: {e}') |
|
return stats
|
|
|