You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
350 lines
16 KiB
350 lines
16 KiB
# Ultralytics YOLO 🚀, AGPL-3.0 license |
|
|
|
import os |
|
from pathlib import Path |
|
|
|
import cv2 |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
|
|
from ultralytics.utils import TQDM |
|
|
|
|
|
class FastSAMPrompt: |
|
""" |
|
Fast Segment Anything Model class for image annotation and visualization. |
|
|
|
Attributes: |
|
device (str): Computing device ('cuda' or 'cpu'). |
|
results: Object detection or segmentation results. |
|
source: Source image or image path. |
|
clip: CLIP model for linear assignment. |
|
""" |
|
|
|
def __init__(self, source, results, device='cuda') -> None: |
|
"""Initializes FastSAMPrompt with given source, results and device, and assigns clip for linear assignment.""" |
|
self.device = device |
|
self.results = results |
|
self.source = source |
|
|
|
# Import and assign clip |
|
try: |
|
import clip # for linear_assignment |
|
except ImportError: |
|
from ultralytics.utils.checks import check_requirements |
|
check_requirements('git+https://github.com/openai/CLIP.git') |
|
import clip |
|
self.clip = clip |
|
|
|
@staticmethod |
|
def _segment_image(image, bbox): |
|
"""Segments the given image according to the provided bounding box coordinates.""" |
|
image_array = np.array(image) |
|
segmented_image_array = np.zeros_like(image_array) |
|
x1, y1, x2, y2 = bbox |
|
segmented_image_array[y1:y2, x1:x2] = image_array[y1:y2, x1:x2] |
|
segmented_image = Image.fromarray(segmented_image_array) |
|
black_image = Image.new('RGB', image.size, (255, 255, 255)) |
|
# transparency_mask = np.zeros_like((), dtype=np.uint8) |
|
transparency_mask = np.zeros((image_array.shape[0], image_array.shape[1]), dtype=np.uint8) |
|
transparency_mask[y1:y2, x1:x2] = 255 |
|
transparency_mask_image = Image.fromarray(transparency_mask, mode='L') |
|
black_image.paste(segmented_image, mask=transparency_mask_image) |
|
return black_image |
|
|
|
@staticmethod |
|
def _format_results(result, filter=0): |
|
"""Formats detection results into list of annotations each containing ID, segmentation, bounding box, score and |
|
area. |
|
""" |
|
annotations = [] |
|
n = len(result.masks.data) if result.masks is not None else 0 |
|
for i in range(n): |
|
mask = result.masks.data[i] == 1.0 |
|
if torch.sum(mask) >= filter: |
|
annotation = { |
|
'id': i, |
|
'segmentation': mask.cpu().numpy(), |
|
'bbox': result.boxes.data[i], |
|
'score': result.boxes.conf[i]} |
|
annotation['area'] = annotation['segmentation'].sum() |
|
annotations.append(annotation) |
|
return annotations |
|
|
|
@staticmethod |
|
def _get_bbox_from_mask(mask): |
|
"""Applies morphological transformations to the mask, displays it, and if with_contours is True, draws |
|
contours. |
|
""" |
|
mask = mask.astype(np.uint8) |
|
contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) |
|
x1, y1, w, h = cv2.boundingRect(contours[0]) |
|
x2, y2 = x1 + w, y1 + h |
|
if len(contours) > 1: |
|
for b in contours: |
|
x_t, y_t, w_t, h_t = cv2.boundingRect(b) |
|
x1 = min(x1, x_t) |
|
y1 = min(y1, y_t) |
|
x2 = max(x2, x_t + w_t) |
|
y2 = max(y2, y_t + h_t) |
|
return [x1, y1, x2, y2] |
|
|
|
def plot(self, |
|
annotations, |
|
output, |
|
bbox=None, |
|
points=None, |
|
point_label=None, |
|
mask_random_color=True, |
|
better_quality=True, |
|
retina=False, |
|
with_contours=True): |
|
""" |
|
Plots annotations, bounding boxes, and points on images and saves the output. |
|
|
|
Args: |
|
annotations (list): Annotations to be plotted. |
|
output (str or Path): Output directory for saving the plots. |
|
bbox (list, optional): Bounding box coordinates [x1, y1, x2, y2]. Defaults to None. |
|
points (list, optional): Points to be plotted. Defaults to None. |
|
point_label (list, optional): Labels for the points. Defaults to None. |
|
mask_random_color (bool, optional): Whether to use random color for masks. Defaults to True. |
|
better_quality (bool, optional): Whether to apply morphological transformations for better mask quality. Defaults to True. |
|
retina (bool, optional): Whether to use retina mask. Defaults to False. |
|
with_contours (bool, optional): Whether to plot contours. Defaults to True. |
|
""" |
|
pbar = TQDM(annotations, total=len(annotations)) |
|
for ann in pbar: |
|
result_name = os.path.basename(ann.path) |
|
image = ann.orig_img[..., ::-1] # BGR to RGB |
|
original_h, original_w = ann.orig_shape |
|
# For macOS only |
|
# plt.switch_backend('TkAgg') |
|
plt.figure(figsize=(original_w / 100, original_h / 100)) |
|
# Add subplot with no margin. |
|
plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0) |
|
plt.margins(0, 0) |
|
plt.gca().xaxis.set_major_locator(plt.NullLocator()) |
|
plt.gca().yaxis.set_major_locator(plt.NullLocator()) |
|
plt.imshow(image) |
|
|
|
if ann.masks is not None: |
|
masks = ann.masks.data |
|
if better_quality: |
|
if isinstance(masks[0], torch.Tensor): |
|
masks = np.array(masks.cpu()) |
|
for i, mask in enumerate(masks): |
|
mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8)) |
|
masks[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8)) |
|
|
|
self.fast_show_mask(masks, |
|
plt.gca(), |
|
random_color=mask_random_color, |
|
bbox=bbox, |
|
points=points, |
|
pointlabel=point_label, |
|
retinamask=retina, |
|
target_height=original_h, |
|
target_width=original_w) |
|
|
|
if with_contours: |
|
contour_all = [] |
|
temp = np.zeros((original_h, original_w, 1)) |
|
for i, mask in enumerate(masks): |
|
mask = mask.astype(np.uint8) |
|
if not retina: |
|
mask = cv2.resize(mask, (original_w, original_h), interpolation=cv2.INTER_NEAREST) |
|
contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) |
|
contour_all.extend(iter(contours)) |
|
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2) |
|
color = np.array([0 / 255, 0 / 255, 1.0, 0.8]) |
|
contour_mask = temp / 255 * color.reshape(1, 1, -1) |
|
plt.imshow(contour_mask) |
|
|
|
# Save the figure |
|
save_path = Path(output) / result_name |
|
save_path.parent.mkdir(exist_ok=True, parents=True) |
|
plt.axis('off') |
|
plt.savefig(save_path, bbox_inches='tight', pad_inches=0, transparent=True) |
|
plt.close() |
|
pbar.set_description(f'Saving {result_name} to {save_path}') |
|
|
|
@staticmethod |
|
def fast_show_mask( |
|
annotation, |
|
ax, |
|
random_color=False, |
|
bbox=None, |
|
points=None, |
|
pointlabel=None, |
|
retinamask=True, |
|
target_height=960, |
|
target_width=960, |
|
): |
|
""" |
|
Quickly shows the mask annotations on the given matplotlib axis. |
|
|
|
Args: |
|
annotation (array-like): Mask annotation. |
|
ax (matplotlib.axes.Axes): Matplotlib axis. |
|
random_color (bool, optional): Whether to use random color for masks. Defaults to False. |
|
bbox (list, optional): Bounding box coordinates [x1, y1, x2, y2]. Defaults to None. |
|
points (list, optional): Points to be plotted. Defaults to None. |
|
pointlabel (list, optional): Labels for the points. Defaults to None. |
|
retinamask (bool, optional): Whether to use retina mask. Defaults to True. |
|
target_height (int, optional): Target height for resizing. Defaults to 960. |
|
target_width (int, optional): Target width for resizing. Defaults to 960. |
|
""" |
|
n, h, w = annotation.shape # batch, height, width |
|
|
|
areas = np.sum(annotation, axis=(1, 2)) |
|
annotation = annotation[np.argsort(areas)] |
|
|
|
index = (annotation != 0).argmax(axis=0) |
|
if random_color: |
|
color = np.random.random((n, 1, 1, 3)) |
|
else: |
|
color = np.ones((n, 1, 1, 3)) * np.array([30 / 255, 144 / 255, 1.0]) |
|
transparency = np.ones((n, 1, 1, 1)) * 0.6 |
|
visual = np.concatenate([color, transparency], axis=-1) |
|
mask_image = np.expand_dims(annotation, -1) * visual |
|
|
|
show = np.zeros((h, w, 4)) |
|
h_indices, w_indices = np.meshgrid(np.arange(h), np.arange(w), indexing='ij') |
|
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None)) |
|
|
|
show[h_indices, w_indices, :] = mask_image[indices] |
|
if bbox is not None: |
|
x1, y1, x2, y2 = bbox |
|
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1)) |
|
# Draw point |
|
if points is not None: |
|
plt.scatter( |
|
[point[0] for i, point in enumerate(points) if pointlabel[i] == 1], |
|
[point[1] for i, point in enumerate(points) if pointlabel[i] == 1], |
|
s=20, |
|
c='y', |
|
) |
|
plt.scatter( |
|
[point[0] for i, point in enumerate(points) if pointlabel[i] == 0], |
|
[point[1] for i, point in enumerate(points) if pointlabel[i] == 0], |
|
s=20, |
|
c='m', |
|
) |
|
|
|
if not retinamask: |
|
show = cv2.resize(show, (target_width, target_height), interpolation=cv2.INTER_NEAREST) |
|
ax.imshow(show) |
|
|
|
@torch.no_grad() |
|
def retrieve(self, model, preprocess, elements, search_text: str, device) -> int: |
|
"""Processes images and text with a model, calculates similarity, and returns softmax score.""" |
|
preprocessed_images = [preprocess(image).to(device) for image in elements] |
|
tokenized_text = self.clip.tokenize([search_text]).to(device) |
|
stacked_images = torch.stack(preprocessed_images) |
|
image_features = model.encode_image(stacked_images) |
|
text_features = model.encode_text(tokenized_text) |
|
image_features /= image_features.norm(dim=-1, keepdim=True) |
|
text_features /= text_features.norm(dim=-1, keepdim=True) |
|
probs = 100.0 * image_features @ text_features.T |
|
return probs[:, 0].softmax(dim=0) |
|
|
|
def _crop_image(self, format_results): |
|
"""Crops an image based on provided annotation format and returns cropped images and related data.""" |
|
if os.path.isdir(self.source): |
|
raise ValueError(f"'{self.source}' is a directory, not a valid source for this function.") |
|
image = Image.fromarray(cv2.cvtColor(self.results[0].orig_img, cv2.COLOR_BGR2RGB)) |
|
ori_w, ori_h = image.size |
|
annotations = format_results |
|
mask_h, mask_w = annotations[0]['segmentation'].shape |
|
if ori_w != mask_w or ori_h != mask_h: |
|
image = image.resize((mask_w, mask_h)) |
|
cropped_boxes = [] |
|
cropped_images = [] |
|
not_crop = [] |
|
filter_id = [] |
|
for _, mask in enumerate(annotations): |
|
if np.sum(mask['segmentation']) <= 100: |
|
filter_id.append(_) |
|
continue |
|
bbox = self._get_bbox_from_mask(mask['segmentation']) # mask 的 bbox |
|
cropped_boxes.append(self._segment_image(image, bbox)) # 保存裁剪的图片 |
|
cropped_images.append(bbox) # 保存裁剪的图片的bbox |
|
|
|
return cropped_boxes, cropped_images, not_crop, filter_id, annotations |
|
|
|
def box_prompt(self, bbox): |
|
"""Modifies the bounding box properties and calculates IoU between masks and bounding box.""" |
|
if self.results[0].masks is not None: |
|
assert (bbox[2] != 0 and bbox[3] != 0) |
|
if os.path.isdir(self.source): |
|
raise ValueError(f"'{self.source}' is a directory, not a valid source for this function.") |
|
masks = self.results[0].masks.data |
|
target_height, target_width = self.results[0].orig_shape |
|
h = masks.shape[1] |
|
w = masks.shape[2] |
|
if h != target_height or w != target_width: |
|
bbox = [ |
|
int(bbox[0] * w / target_width), |
|
int(bbox[1] * h / target_height), |
|
int(bbox[2] * w / target_width), |
|
int(bbox[3] * h / target_height), ] |
|
bbox[0] = max(round(bbox[0]), 0) |
|
bbox[1] = max(round(bbox[1]), 0) |
|
bbox[2] = min(round(bbox[2]), w) |
|
bbox[3] = min(round(bbox[3]), h) |
|
|
|
# IoUs = torch.zeros(len(masks), dtype=torch.float32) |
|
bbox_area = (bbox[3] - bbox[1]) * (bbox[2] - bbox[0]) |
|
|
|
masks_area = torch.sum(masks[:, bbox[1]:bbox[3], bbox[0]:bbox[2]], dim=(1, 2)) |
|
orig_masks_area = torch.sum(masks, dim=(1, 2)) |
|
|
|
union = bbox_area + orig_masks_area - masks_area |
|
iou = masks_area / union |
|
max_iou_index = torch.argmax(iou) |
|
|
|
self.results[0].masks.data = torch.tensor(np.array([masks[max_iou_index].cpu().numpy()])) |
|
return self.results |
|
|
|
def point_prompt(self, points, pointlabel): # numpy |
|
"""Adjusts points on detected masks based on user input and returns the modified results.""" |
|
if self.results[0].masks is not None: |
|
if os.path.isdir(self.source): |
|
raise ValueError(f"'{self.source}' is a directory, not a valid source for this function.") |
|
masks = self._format_results(self.results[0], 0) |
|
target_height, target_width = self.results[0].orig_shape |
|
h = masks[0]['segmentation'].shape[0] |
|
w = masks[0]['segmentation'].shape[1] |
|
if h != target_height or w != target_width: |
|
points = [[int(point[0] * w / target_width), int(point[1] * h / target_height)] for point in points] |
|
onemask = np.zeros((h, w)) |
|
for annotation in masks: |
|
mask = annotation['segmentation'] if isinstance(annotation, dict) else annotation |
|
for i, point in enumerate(points): |
|
if mask[point[1], point[0]] == 1 and pointlabel[i] == 1: |
|
onemask += mask |
|
if mask[point[1], point[0]] == 1 and pointlabel[i] == 0: |
|
onemask -= mask |
|
onemask = onemask >= 1 |
|
self.results[0].masks.data = torch.tensor(np.array([onemask])) |
|
return self.results |
|
|
|
def text_prompt(self, text): |
|
"""Processes a text prompt, applies it to existing results and returns the updated results.""" |
|
if self.results[0].masks is not None: |
|
format_results = self._format_results(self.results[0], 0) |
|
cropped_boxes, cropped_images, not_crop, filter_id, annotations = self._crop_image(format_results) |
|
clip_model, preprocess = self.clip.load('ViT-B/32', device=self.device) |
|
scores = self.retrieve(clip_model, preprocess, cropped_boxes, text, device=self.device) |
|
max_idx = scores.argsort() |
|
max_idx = max_idx[-1] |
|
max_idx += sum(np.array(filter_id) <= int(max_idx)) |
|
self.results[0].masks.data = torch.tensor(np.array([annotations[max_idx]['segmentation']])) |
|
return self.results |
|
|
|
def everything_prompt(self): |
|
"""Returns the processed results from the previous methods in the class.""" |
|
return self.results
|
|
|