You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
85 lines
4.0 KiB
85 lines
4.0 KiB
# Ultralytics YOLO 🚀, AGPL-3.0 license |
|
|
|
import torch |
|
|
|
from ultralytics.engine.results import Results |
|
from ultralytics.models.fastsam.utils import bbox_iou |
|
from ultralytics.models.yolo.detect.predict import DetectionPredictor |
|
from ultralytics.utils import DEFAULT_CFG, ops |
|
|
|
|
|
class FastSAMPredictor(DetectionPredictor): |
|
""" |
|
FastSAMPredictor is specialized for fast SAM (Segment Anything Model) segmentation prediction tasks in Ultralytics |
|
YOLO framework. |
|
|
|
This class extends the DetectionPredictor, customizing the prediction pipeline specifically for fast SAM. |
|
It adjusts post-processing steps to incorporate mask prediction and non-max suppression while optimizing |
|
for single-class segmentation. |
|
|
|
Attributes: |
|
cfg (dict): Configuration parameters for prediction. |
|
overrides (dict, optional): Optional parameter overrides for custom behavior. |
|
_callbacks (dict, optional): Optional list of callback functions to be invoked during prediction. |
|
""" |
|
|
|
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): |
|
""" |
|
Initializes the FastSAMPredictor class, inheriting from DetectionPredictor and setting the task to 'segment'. |
|
|
|
Args: |
|
cfg (dict): Configuration parameters for prediction. |
|
overrides (dict, optional): Optional parameter overrides for custom behavior. |
|
_callbacks (dict, optional): Optional list of callback functions to be invoked during prediction. |
|
""" |
|
super().__init__(cfg, overrides, _callbacks) |
|
self.args.task = 'segment' |
|
|
|
def postprocess(self, preds, img, orig_imgs): |
|
""" |
|
Perform post-processing steps on predictions, including non-max suppression and scaling boxes to original image |
|
size, and returns the final results. |
|
|
|
Args: |
|
preds (list): The raw output predictions from the model. |
|
img (torch.Tensor): The processed image tensor. |
|
orig_imgs (list | torch.Tensor): The original image or list of images. |
|
|
|
Returns: |
|
(list): A list of Results objects, each containing processed boxes, masks, and other metadata. |
|
""" |
|
p = ops.non_max_suppression( |
|
preds[0], |
|
self.args.conf, |
|
self.args.iou, |
|
agnostic=self.args.agnostic_nms, |
|
max_det=self.args.max_det, |
|
nc=1, # set to 1 class since SAM has no class predictions |
|
classes=self.args.classes) |
|
full_box = torch.zeros(p[0].shape[1], device=p[0].device) |
|
full_box[2], full_box[3], full_box[4], full_box[6:] = img.shape[3], img.shape[2], 1.0, 1.0 |
|
full_box = full_box.view(1, -1) |
|
critical_iou_index = bbox_iou(full_box[0][:4], p[0][:, :4], iou_thres=0.9, image_shape=img.shape[2:]) |
|
if critical_iou_index.numel() != 0: |
|
full_box[0][4] = p[0][critical_iou_index][:, 4] |
|
full_box[0][6:] = p[0][critical_iou_index][:, 6:] |
|
p[0][critical_iou_index] = full_box |
|
|
|
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list |
|
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs) |
|
|
|
results = [] |
|
proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported |
|
for i, pred in enumerate(p): |
|
orig_img = orig_imgs[i] |
|
img_path = self.batch[0][i] |
|
if not len(pred): # save empty boxes |
|
masks = None |
|
elif self.args.retina_masks: |
|
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) |
|
masks = ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], orig_img.shape[:2]) # HWC |
|
else: |
|
masks = ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True) # HWC |
|
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) |
|
results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], masks=masks)) |
|
return results
|
|
|