You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

6.4 KiB

comments description keywords
true Learn how to isolate and extract specific objects from images and videos using YOLOv8 object cropping. Ultralytics, YOLOv8, Object Detection, Object Cropping, Image Analysis, Video Processing, Data Extraction, Python

Object Cropping using Ultralytics YOLOv8 🚀

What is Object Cropping?

Object cropping with Ultralytics YOLOv8 involves isolating and extracting specific detected objects from an image or video. The YOLOv8 model capabilities are utilized to accurately identify and delineate objects, enabling precise cropping for further analysis or manipulation.

Advantages of Object Cropping?

  • Focused Analysis: YOLOv8 facilitates targeted object cropping, allowing for in-depth examination or processing of individual items within a scene.
  • Reduced Data Volume: By extracting only relevant objects, object cropping helps in minimizing data size, making it efficient for storage, transmission, or subsequent computational tasks.
  • Enhanced Precision: YOLOv8's object detection accuracy ensures that the cropped objects maintain their spatial relationships, preserving the integrity of the visual information for detailed analysis.

Visuals

Airport Luggage
Conveyor Belt at Airport Suitcases Cropping using Ultralytics YOLOv8
Suitcases Cropping at airport conveyor belt using Ultralytics YOLOv8

!!! Example "Object Cropping using YOLOv8 Example"

=== "Object Cropping"

    ```python
    from ultralytics import YOLO
    from ultralytics.utils.plotting import Annotator, colors
    import cv2
    import os

    model = YOLO("yolov8n.pt")
    names = model.names

    cap = cv2.VideoCapture("path/to/video/file.mp4")
    assert cap.isOpened(), "Error reading video file"
    w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

    crop_dir_name = "ultralytics_crop"
    if not os.path.exists(crop_dir_name):
        os.mkdir(crop_dir_name)

    # Video writer
    video_writer = cv2.VideoWriter("object_cropping_output.avi",
                                   cv2.VideoWriter_fourcc(*'mp4v'),
                                   fps, (w, h))

    idx = 0
    while cap.isOpened():
        success, im0 = cap.read()
        if not success:
            print("Video frame is empty or video processing has been successfully completed.")
            break

        results = model.predict(im0, show=False)
        boxes = results[0].boxes.xyxy.cpu().tolist()
        clss = results[0].boxes.cls.cpu().tolist()
        annotator = Annotator(im0, line_width=2, example=names)

        if boxes is not None:
            for box, cls in zip(boxes, clss):
                idx += 1
                annotator.box_label(box, color=colors(int(cls), True), label=names[int(cls)])

                crop_obj = im0[int(box[1]):int(box[3]), int(box[0]):int(box[2])]

                cv2.imwrite(os.path.join(crop_dir_name, str(idx)+".png"), crop_obj)

        cv2.imshow("ultralytics", im0)
        video_writer.write(im0)

        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

    cap.release()
    video_writer.release()
    cv2.destroyAllWindows()
    ```

Arguments model.predict

Name Type Default Description
source str 'ultralytics/assets' source directory for images or videos
conf float 0.25 object confidence threshold for detection
iou float 0.7 intersection over union (IoU) threshold for NMS
imgsz int or tuple 640 image size as scalar or (h, w) list, i.e. (640, 480)
half bool False use half precision (FP16)
device None or str None device to run on, i.e. cuda device=0/1/2/3 or device=cpu
max_det int 300 maximum number of detections per image
vid_stride bool False video frame-rate stride
stream_buffer bool False buffer all streaming frames (True) or return the most recent frame (False)
visualize bool False visualize model features
augment bool False apply image augmentation to prediction sources
agnostic_nms bool False class-agnostic NMS
classes list[int] None filter results by class, i.e. classes=0, or classes=[0,2,3]
retina_masks bool False use high-resolution segmentation masks
embed list[int] None return feature vectors/embeddings from given layers