You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
52 lines
2.0 KiB
52 lines
2.0 KiB
# Ultralytics YOLO 🚀, AGPL-3.0 license |
|
|
|
import torch |
|
|
|
from ultralytics.yolo.engine.predictor import BasePredictor |
|
from ultralytics.yolo.engine.results import Results |
|
from ultralytics.yolo.utils import DEFAULT_CFG, ROOT, ops |
|
|
|
|
|
class DetectionPredictor(BasePredictor): |
|
|
|
def preprocess(self, img): |
|
img = (img if isinstance(img, torch.Tensor) else torch.from_numpy(img)).to(self.model.device) |
|
img = img.half() if self.model.fp16 else img.float() # uint8 to fp16/32 |
|
img /= 255 # 0 - 255 to 0.0 - 1.0 |
|
return img |
|
|
|
def postprocess(self, preds, img, orig_imgs): |
|
preds = ops.non_max_suppression(preds, |
|
self.args.conf, |
|
self.args.iou, |
|
agnostic=self.args.agnostic_nms, |
|
max_det=self.args.max_det, |
|
classes=self.args.classes) |
|
|
|
results = [] |
|
for i, pred in enumerate(preds): |
|
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs |
|
if not isinstance(orig_imgs, torch.Tensor): |
|
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) |
|
path, _, _, _, _ = self.batch |
|
img_path = path[i] if isinstance(path, list) else path |
|
results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred)) |
|
return results |
|
|
|
|
|
def predict(cfg=DEFAULT_CFG, use_python=False): |
|
model = cfg.model or 'yolov8n.pt' |
|
source = cfg.source if cfg.source is not None else ROOT / 'assets' if (ROOT / 'assets').exists() \ |
|
else 'https://ultralytics.com/images/bus.jpg' |
|
|
|
args = dict(model=model, source=source) |
|
if use_python: |
|
from ultralytics import YOLO |
|
YOLO(model)(**args) |
|
else: |
|
predictor = DetectionPredictor(overrides=args) |
|
predictor.predict_cli() |
|
|
|
|
|
if __name__ == '__main__': |
|
predict()
|
|
|