You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

122 lines
4.0 KiB

# Ultralytics YOLO 🚀, AGPL-3.0 license
import subprocess
from pathlib import Path
import pytest
from ultralytics.utils import ASSETS, SETTINGS
WEIGHTS_DIR = Path(SETTINGS['weights_dir'])
TASK_ARGS = [
('detect', 'yolov8n', 'coco8.yaml'),
('segment', 'yolov8n-seg', 'coco8-seg.yaml'),
('classify', 'yolov8n-cls', 'imagenet10'),
('pose', 'yolov8n-pose', 'coco8-pose.yaml'), ] # (task, model, data)
EXPORT_ARGS = [
('yolov8n', 'torchscript'),
('yolov8n-seg', 'torchscript'),
('yolov8n-cls', 'torchscript'),
('yolov8n-pose', 'torchscript'), ] # (model, format)
def run(cmd):
# Run a subprocess command with check=True
subprocess.run(cmd.split(), check=True)
def test_special_modes():
run('yolo help')
run('yolo checks')
run('yolo version')
run('yolo settings reset')
run('yolo cfg')
@pytest.mark.parametrize('task,model,data', TASK_ARGS)
def test_train(task, model, data):
run(f'yolo train {task} model={model}.yaml data={data} imgsz=32 epochs=1 cache=disk')
@pytest.mark.parametrize('task,model,data', TASK_ARGS)
def test_val(task, model, data):
run(f'yolo val {task} model={WEIGHTS_DIR / model}.pt data={data} imgsz=32 save_txt save_json')
@pytest.mark.parametrize('task,model,data', TASK_ARGS)
def test_predict(task, model, data):
run(f'yolo predict model={WEIGHTS_DIR / model}.pt source={ASSETS} imgsz=32 save save_crop save_txt')
@pytest.mark.parametrize('model,format', EXPORT_ARGS)
def test_export(model, format):
run(f'yolo export model={WEIGHTS_DIR / model}.pt format={format} imgsz=32')
def test_rtdetr(task='detect', model='yolov8n-rtdetr.yaml', data='coco8.yaml'):
# Warning: MUST use imgsz=640
run(f'yolo train {task} model={model} data={data} --imgsz= 640 epochs =1, cache = disk') # add coma, spaces to args
run(f"yolo predict {task} model={model} source={ASSETS / 'bus.jpg'} imgsz=640 save save_crop save_txt")
def test_fastsam(task='segment', model=WEIGHTS_DIR / 'FastSAM-s.pt', data='coco8-seg.yaml'):
source = ASSETS / 'bus.jpg'
run(f'yolo segment val {task} model={model} data={data} imgsz=32')
run(f'yolo segment predict model={model} source={source} imgsz=32 save save_crop save_txt')
from ultralytics import FastSAM
from ultralytics.models.fastsam import FastSAMPrompt
from ultralytics.models.sam import Predictor
# Create a FastSAM model
sam_model = FastSAM(model) # or FastSAM-x.pt
# Run inference on an image
everything_results = sam_model(source, device='cpu', retina_masks=True, imgsz=1024, conf=0.4, iou=0.9)
# Remove small regions
new_masks, _ = Predictor.remove_small_regions(everything_results[0].masks.data, min_area=20)
# Everything prompt
prompt_process = FastSAMPrompt(source, everything_results, device='cpu')
ann = prompt_process.everything_prompt()
# Bbox default shape [0,0,0,0] -> [x1,y1,x2,y2]
ann = prompt_process.box_prompt(bbox=[200, 200, 300, 300])
# Text prompt
ann = prompt_process.text_prompt(text='a photo of a dog')
# Point prompt
# points default [[0,0]] [[x1,y1],[x2,y2]]
# point_label default [0] [1,0] 0:background, 1:foreground
ann = prompt_process.point_prompt(points=[[200, 200]], pointlabel=[1])
prompt_process.plot(annotations=ann, output='./')
def test_mobilesam():
from ultralytics import SAM
# Load the model
model = SAM(WEIGHTS_DIR / 'mobile_sam.pt')
# Source
source = ASSETS / 'zidane.jpg'
# Predict a segment based on a point prompt
model.predict(source, points=[900, 370], labels=[1])
# Predict a segment based on a box prompt
model.predict(source, bboxes=[439, 437, 524, 709])
# Predict all
# model(source)
# Slow Tests
@pytest.mark.slow
@pytest.mark.parametrize('task,model,data', TASK_ARGS)
def test_train_gpu(task, model, data):
run(f'yolo train {task} model={model}.yaml data={data} imgsz=32 epochs=1 device="0"') # single GPU
run(f'yolo train {task} model={model}.pt data={data} imgsz=32 epochs=1 device="0,1"') # multi GPU