You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
98 lines
6.1 KiB
98 lines
6.1 KiB
--- |
|
comments: true |
|
description: Speed Estimation Using Ultralytics YOLOv8 |
|
keywords: Ultralytics, YOLOv8, Object Detection, Speed Estimation, Object Tracking, Notebook, IPython Kernel, CLI, Python SDK |
|
--- |
|
|
|
# Speed Estimation using Ultralytics YOLOv8 🚀 |
|
|
|
## What is Speed Estimation? |
|
|
|
Speed estimation is the process of calculating the rate of movement of an object within a given context, often employed in computer vision applications. Using [Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics/) you can now calculate the speed of object using [object tracking](https://docs.ultralytics.com/modes/track/) alongside distance and time data, crucial for tasks like traffic and surveillance. The accuracy of speed estimation directly influences the efficiency and reliability of various applications, making it a key component in the advancement of intelligent systems and real-time decision-making processes. |
|
|
|
## Advantages of Speed Estimation? |
|
|
|
- **Efficient Traffic Control:** Accurate speed estimation aids in managing traffic flow, enhancing safety, and reducing congestion on roadways. |
|
- **Precise Autonomous Navigation:** In autonomous systems like self-driving cars, reliable speed estimation ensures safe and accurate vehicle navigation. |
|
- **Enhanced Surveillance Security:** Speed estimation in surveillance analytics helps identify unusual behaviors or potential threats, improving the effectiveness of security measures. |
|
|
|
## Real World Applications |
|
|
|
| Transportation | Transportation | |
|
|:-------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------:| |
|
| ![Speed Estimation on Road using Ultralytics YOLOv8](https://github.com/RizwanMunawar/ultralytics/assets/62513924/c8a0fd4a-d394-436d-8de3-d5b754755fc7) | ![Speed Estimation on Bridge using Ultralytics YOLOv8](https://github.com/RizwanMunawar/ultralytics/assets/62513924/cee10e02-b268-4304-b73a-5b9cb42da669) | |
|
| Speed Estimation on Road using Ultralytics YOLOv8 | Speed Estimation on Bridge using Ultralytics YOLOv8 | |
|
|
|
!!! Example "Speed Estimation using YOLOv8 Example" |
|
|
|
=== "Speed Estimation" |
|
```python |
|
from ultralytics import YOLO |
|
from ultralytics.solutions import speed_estimation |
|
import cv2 |
|
|
|
model = YOLO("yolov8n.pt") |
|
names = model.model.names |
|
|
|
cap = cv2.VideoCapture("path/to/video/file.mp4") |
|
assert cap.isOpened(), "Error reading video file" |
|
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS)) |
|
|
|
# Video writer |
|
video_writer = cv2.VideoWriter("speed_estimation.avi", |
|
cv2.VideoWriter_fourcc(*'mp4v'), |
|
fps, |
|
(w, h)) |
|
|
|
line_pts = [(0, 360), (1280, 360)] |
|
|
|
# Init speed-estimation obj |
|
speed_obj = speed_estimation.SpeedEstimator() |
|
speed_obj.set_args(reg_pts=line_pts, |
|
names=names, |
|
view_img=True) |
|
|
|
while cap.isOpened(): |
|
|
|
success, im0 = cap.read() |
|
if not success: |
|
print("Video frame is empty or video processing has been successfully completed.") |
|
break |
|
|
|
tracks = model.track(im0, persist=True, show=False) |
|
|
|
im0 = speed_obj.estimate_speed(im0, tracks) |
|
video_writer.write(im0) |
|
|
|
cap.release() |
|
video_writer.release() |
|
cv2.destroyAllWindows() |
|
|
|
``` |
|
|
|
???+ warning "Speed is Estimate" |
|
|
|
Speed will be an estimate and may not be completely accurate. Additionally, the estimation can vary depending on GPU speed. |
|
|
|
### Optional Arguments `set_args` |
|
|
|
| Name | Type | Default | Description | |
|
|------------------|--------|----------------------------|---------------------------------------------------| |
|
| reg_pts | `list` | `[(20, 400), (1260, 400)]` | Points defining the Region Area | |
|
| names | `dict` | `None` | Classes names | |
|
| view_img | `bool` | `False` | Display frames with counts | |
|
| line_thickness | `int` | `2` | Increase bounding boxes thickness | |
|
| region_thickness | `int` | `5` | Thickness for object counter region or line | |
|
| spdl_dist_thresh | `int` | `10` | Euclidean Distance threshold for speed check line | |
|
|
|
### Arguments `model.track` |
|
|
|
| Name | Type | Default | Description | |
|
|-----------|---------|----------------|-------------------------------------------------------------| |
|
| `source` | `im0` | `None` | source directory for images or videos | |
|
| `persist` | `bool` | `False` | persisting tracks between frames | |
|
| `tracker` | `str` | `botsort.yaml` | Tracking method 'bytetrack' or 'botsort' | |
|
| `conf` | `float` | `0.3` | Confidence Threshold | |
|
| `iou` | `float` | `0.5` | IOU Threshold | |
|
| `classes` | `list` | `None` | filter results by class, i.e. classes=0, or classes=[0,2,3] | |
|
| `verbose` | `bool` | `True` | Display the object tracking results |
|
|
|