You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
184 lines
14 KiB
184 lines
14 KiB
--- |
|
comments: true |
|
description: Официальная документация YOLOv8 от Ultralytics. Узнайте, как проводить обучение, проверку, предсказание и экспорт моделей в различных форматах. Включая подробные статистические данные о производительности. |
|
keywords: YOLOv8, Ultralytics, обнаружение объектов, предобученные модели, обучение, валидация, предсказание, экспорт моделей, COCO, ImageNet, PyTorch, ONNX, CoreML |
|
--- |
|
|
|
# Обнаружение объектов |
|
|
|
<img width="1024" src="https://user-images.githubusercontent.com/26833433/243418624-5785cb93-74c9-4541-9179-d5c6782d491a.png" alt="Примеры обнаружения объектов"> |
|
|
|
Обнаружение объектов – это задача, которая включает идентификацию местоположения и класса объектов на изображении или видео. |
|
|
|
Результат работы детектора объектов – это набор ограничивающих рамок, которые заключают в себе объекты на изображении, вместе с метками классов и уровнями достоверности для каждой рамки. Обнаружение объектов является хорошим выбором, когда необходимо определить объекты интереса в сцене, но не нужно точно знать, где находится объект или его точную форму. |
|
|
|
<p align="center"> |
|
<br> |
|
<iframe width="720" height="405" src="https://www.youtube.com/embed/5ku7npMrW40?si=6HQO1dDXunV8gekh" |
|
title="YouTube video player" frameborder="0" |
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" |
|
allowfullscreen> |
|
</iframe> |
|
<br> |
|
<strong>Смотрите:</strong> Обнаружение объектов с предобученной моделью Ultralytics YOLOv8. |
|
</p> |
|
|
|
!!! tip "Совет" |
|
|
|
YOLOv8 Detect модели являются стандартными моделями YOLOv8, то есть `yolov8n.pt`, и предобучены на [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml). |
|
|
|
## [Модели](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/v8) |
|
|
|
Здесь показаны предобученные модели YOLOv8 Detect. Модели Detect, Segment и Pose предобучены на датасете [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml), в то время как модели Classify предобучены на датасете [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/ImageNet.yaml). |
|
|
|
[Модели](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models) автоматически загружаются с последнего релиза Ultralytics [release](https://github.com/ultralytics/assets/releases) при первом использовании. |
|
|
|
| Модель | размер<br><sup>(пиксели) | mAP<sup>val<br>50-95 | Скорость<br><sup>CPU ONNX<br>(мс) | Скорость<br><sup>A100 TensorRT<br>(мс) | параметры<br><sup>(М) | FLOPs<br><sup>(Б) | |
|
|--------------------------------------------------------------------------------------|--------------------------|----------------------|-----------------------------------|----------------------------------------|-----------------------|-------------------| |
|
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 | |
|
| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 | |
|
| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 | |
|
| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 | |
|
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 | |
|
|
|
- **mAP<sup>val</sup>** значения для одиночной модели одиночного масштаба на датасете [COCO val2017](http://cocodataset.org). |
|
<br>Для воспроизведения используйте `yolo val detect data=coco.yaml device=0` |
|
- **Скорость** усреднена по изображениям COCO val на экземпляре [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/). |
|
<br>Для воспроизведения используйте `yolo val detect data=coco128.yaml batch=1 device=0|cpu` |
|
|
|
## Обучение |
|
|
|
Обучите модель YOLOv8n на датасете COCO128 в течение 100 эпох с размером изображения 640. Полный список доступных аргументов см. на странице [Конфигурация](../../usage/cfg.md). |
|
|
|
!!! example "" |
|
|
|
=== "Python" |
|
|
|
```python |
|
from ultralytics import YOLO |
|
|
|
# Загрузите модель |
|
model = YOLO('yolov8n.yaml') # создать новую модель из YAML |
|
model = YOLO('yolov8n.pt') # загрузить предобученную модель (рекомендуется для обучения) |
|
model = YOLO('yolov8n.yaml').load('yolov8n.pt') # создать из YAML и перенести веса |
|
|
|
# Обучите модель |
|
results = model.train(data='coco128.yaml', epochs=100, imgsz=640) |
|
``` |
|
=== "CLI" |
|
|
|
```bash |
|
# Создать новую модель из YAML и начать обучение с нуля |
|
yolo detect train data=coco128.yaml model=yolov8n.yaml epochs=100 imgsz=640 |
|
|
|
# Начать обучение с предобученной модели *.pt |
|
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=100 imgsz=640 |
|
|
|
# Создать новую модель из YAML, перенести в нее предобученные веса и начать обучение |
|
yolo detect train data=coco128.yaml model=yolov8n.yaml pretrained=yolov8n.pt epochs=100 imgsz=640 |
|
``` |
|
|
|
### Формат датасета |
|
|
|
Формат датасета для обнаружения YOLO можно найти более подробно в [Руководстве по датасетам](../../datasets/detect/index.md). Чтобы конвертировать ваш существующий датасет из других форматов (например, COCO и т.д.) в формат YOLO, пожалуйста, используйте инструмент [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) от Ultralytics. |
|
|
|
## Валидация |
|
|
|
Проверьте точность обученной модели YOLOv8n на датасете COCO128. Необходимо передать аргументы, поскольку `model` сохраняет свои `data` и аргументы обучения как атрибуты модели. |
|
|
|
!!! example "" |
|
|
|
=== "Python" |
|
|
|
```python |
|
from ultralytics import YOLO |
|
|
|
# Загрузите модель |
|
model = YOLO('yolov8n.pt') # загрузить официальную модель |
|
model = YOLO('path/to/best.pt') # загрузить собственную модель |
|
|
|
# Проверьте модель |
|
metrics = model.val() # аргументы не нужны, набор данных и настройки запоминаются |
|
metrics.box.map # map50-95 |
|
metrics.box.map50 # map50 |
|
metrics.box.map75 # map75 |
|
metrics.box.maps # список содержит map50-95 для каждой категории |
|
``` |
|
=== "CLI" |
|
|
|
```bash |
|
yolo detect val model=yolov8n.pt # val официальная модель |
|
yolo detect val model=path/to/best.pt # val собственная модель |
|
``` |
|
|
|
## Предсказание |
|
|
|
Используйте обученную модель YOLOv8n для выполнения предсказаний на изображениях. |
|
|
|
!!! example "" |
|
|
|
=== "Python" |
|
|
|
```python |
|
from ultralytics import YOLO |
|
|
|
# Загрузите модель |
|
model = YOLO('yolov8n.pt') # загрузить официальную модель |
|
model = YOLO('path/to/best.pt') # загрузить собственную модель |
|
|
|
# Сделайте предсказание с помощью модели |
|
results = model('https://ultralytics.com/images/bus.jpg') # сделать предсказание на изображении |
|
``` |
|
=== "CLI" |
|
|
|
```bash |
|
yolo detect predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg' # предсказание с официальной моделью |
|
yolo detect predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg' # предсказание с собственной моделью |
|
``` |
|
|
|
Полные детали режима `predict` смотрите на странице [Предсказание](https://docs.ultralytics.com/modes/predict/). |
|
|
|
## Экспорт |
|
|
|
Экспортируйте модель YOLOv8n в другой формат, такой как ONNX, CoreML и др. |
|
|
|
!!! example "" |
|
|
|
=== "Python" |
|
|
|
```python |
|
from ultralytics import YOLO |
|
|
|
# Загрузите модель |
|
model = YOLO('yolov8n.pt') # загрузить официальную модель |
|
model = YOLO('path/to/best.pt') # загрузить собственную модель после обучения |
|
|
|
# Экспортируйте модель |
|
model.export(format='onnx') |
|
``` |
|
=== "CLI" |
|
|
|
```bash |
|
yolo export model=yolov8n.pt format=onnx # экспорт официальной модели |
|
yolo export model=path/to/best.pt format=onnx # экспорт собственной модели после обучения |
|
``` |
|
|
|
Доступные форматы экспорта YOLOv8 приведены в таблице ниже. Вы можете выполнять предсказания или проверку непосредственно на экспортированных моделях, например `yolo predict model=yolov8n.onnx`. Примеры использования для вашей модели показаны после завершения экспорта. |
|
|
|
| Формат | Аргумент `format` | Модель | Метаданные | Аргументы | |
|
|--------------------------------------------------------------------|-------------------|---------------------------|------------|-----------------------------------------------------| |
|
| [PyTorch](https://pytorch.org/) | - | `yolov8n.pt` | ✅ | - | |
|
| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n.torchscript` | ✅ | `imgsz`, `optimize` | |
|
| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n.onnx` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `opset` | |
|
| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n_openvino_model/` | ✅ | `imgsz`, `half` | |
|
| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n.engine` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `workspace` | |
|
| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n.mlpackage` | ✅ | `imgsz`, `half`, `int8`, `nms` | |
|
| [TF SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n_saved_model/` | ✅ | `imgsz`, `keras` | |
|
| [TF GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n.pb` | ❌ | `imgsz` | |
|
| [TF Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n.tflite` | ✅ | `imgsz`, `half`, `int8` | |
|
| [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n_edgetpu.tflite` | ✅ | `imgsz` | |
|
| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n_web_model/` | ✅ | `imgsz` | |
|
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n_paddle_model/` | ✅ | `imgsz` | |
|
| [ncnn](https://github.com/Tencent/ncnn) | `ncnn` | `yolov8n_ncnn_model/` | ✅ | `imgsz`, `half` | |
|
|
|
Полные детали режима `export` смотрите на странице [Экспорт](https://docs.ultralytics.com/modes/export/).
|
|
|