13 KiB
comments | description | Schlagworte |
---|---|---|
true | Erfahren Sie, wie Sie Instanzsegmentierungsmodelle mit Ultralytics YOLO verwenden. Anleitungen zum Training, zur Validierung, zur Bildvorhersage und zum Export von Modellen. | yolov8, Instanzsegmentierung, Ultralytics, COCO-Datensatz, Bildsegmentierung, Objekterkennung, Modelltraining, Modellvalidierung, Bildvorhersage, Modellexport |
Instanzsegmentierung
Instanzsegmentierung geht einen Schritt weiter als die Objekterkennung und beinhaltet die Identifizierung einzelner Objekte in einem Bild und deren Abtrennung vom Rest des Bildes.
Das Ergebnis eines Instanzsegmentierungsmodells ist eine Reihe von Masken oder Konturen, die jedes Objekt im Bild umreißen, zusammen mit Klassenbezeichnungen und Vertrauensscores für jedes Objekt. Instanzsegmentierung ist nützlich, wenn man nicht nur wissen muss, wo sich Objekte in einem Bild befinden, sondern auch, welche genaue Form sie haben.
Schauen Sie: Führen Sie Segmentierung mit dem vortrainierten Ultralytics YOLOv8 Modell in Python aus.
!!! Tipp "Tipp"
YOLOv8 Segment-Modelle verwenden das Suffix `-seg`, d.h. `yolov8n-seg.pt` und sind auf dem [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml)-Datensatz vortrainiert.
Modelle
Hier werden vortrainierte YOLOv8 Segment-Modelle gezeigt. Detect-, Segment- und Pose-Modelle sind auf dem COCO-Datensatz vortrainiert, während Classify-Modelle auf dem ImageNet-Datensatz vortrainiert sind.
Modelle laden sich automatisch von der neuesten Ultralytics Veröffentlichung beim ersten Gebrauch herunter.
Modell | Größe (Pixel) |
mAPKasten 50-95 |
mAPMasken 50-95 |
Geschwindigkeit CPU ONNX (ms) |
Geschwindigkeit A100 TensorRT (ms) |
Parameter (M) |
FLOPs (B) |
---|---|---|---|---|---|---|---|
YOLOv8n-seg | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
YOLOv8s-seg | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
YOLOv8m-seg | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
YOLOv8l-seg | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
YOLOv8x-seg | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
- Die mAPval-Werte sind für ein einzelnes Modell, einzelne Skala auf dem COCO val2017-Datensatz.
Zum Reproduzieren nutzen Sieyolo val segment data=coco.yaml device=0
- Die Geschwindigkeit ist über die COCO-Validierungsbilder gemittelt und verwendet eine Amazon EC2 P4d-Instanz.
Zum Reproduzierenyolo val segment data=coco128-seg.yaml batch=1 device=0|cpu
Training
Trainieren Sie YOLOv8n-seg auf dem COCO128-seg-Datensatz für 100 Epochen mit einer Bildgröße von 640. Eine vollständige Liste der verfügbaren Argumente finden Sie auf der Seite Konfiguration.
!!! Beispiel ""
=== "Python"
```python
from ultralytics import YOLO
# Modell laden
model = YOLO('yolov8n-seg.yaml') # ein neues Modell aus YAML erstellen
model = YOLO('yolov8n-seg.pt') # ein vortrainiertes Modell laden (empfohlen für das Training)
model = YOLO('yolov8n-seg.yaml').load('yolov8n.pt') # aus YAML erstellen und Gewichte übertragen
# Das Modell trainieren
results = model.train(data='coco128-seg.yaml', epochs=100, imgsz=640)
```
=== "CLI"
```bash
# Ein neues Modell aus YAML erstellen und das Training von vorne beginnen
yolo segment train data=coco128-seg.yaml model=yolov8n-seg.yaml epochs=100 imgsz=640
# Das Training von einem vortrainierten *.pt Modell aus starten
yolo segment train data=coco128-seg.yaml model=yolov8n-seg.pt epochs=100 imgsz=640
# Ein neues Modell aus YAML erstellen, vortrainierte Gewichte darauf übertragen und das Training beginnen
yolo segment train data=coco128-seg.yaml model=yolov8n-seg.yaml pretrained=yolov8n-seg.pt epochs=100 imgsz=640
```
Datenformat
Das YOLO Segmentierungsdatenformat finden Sie detailliert im Dataset Guide. Um Ihre vorhandenen Daten aus anderen Formaten (wie COCO usw.) in das YOLO-Format umzuwandeln, verwenden Sie bitte das JSON2YOLO-Tool von Ultralytics.
Val
Validieren Sie die Genauigkeit des trainierten YOLOv8n-seg-Modells auf dem COCO128-seg-Datensatz. Es müssen keine Argumente übergeben werden, da das Modell
seine Trainingsdaten und -argumente als Modellattribute behält.
!!! Beispiel ""
=== "Python"
```python
from ultralytics import YOLO
# Modell laden
model = YOLO('yolov8n-seg.pt') # offizielles Modell laden
model = YOLO('pfad/zu/best.pt') # benutzerdefiniertes Modell laden
# Das Modell validieren
metrics = model.val() # Keine Argumente erforderlich, Datensatz und Einstellungen werden behalten
metrics.box.map # mAP50-95(B)
metrics.box.map50 # mAP50(B)
metrics.box.map75 # mAP75(B)
metrics.box.maps # eine Liste enthält mAP50-95(B) für jede Kategorie
metrics.seg.map # mAP50-95(M)
metrics.seg.map50 # mAP50(M)
metrics.seg.map75 # mAP75(M)
metrics.seg.maps # eine Liste enthält mAP50-95(M) für jede Kategorie
```
=== "CLI"
```bash
yolo segment val model=yolov8n-seg.pt # offizielles Modell validieren
yolo segment val model=pfad/zu/best.pt # benutzerdefiniertes Modell validieren
```
Predict
Verwenden Sie ein trainiertes YOLOv8n-seg-Modell für Vorhersagen auf Bildern.
!!! Beispiel ""
=== "Python"
```python
from ultralytics import YOLO
# Modell laden
model = YOLO('yolov8n-seg.pt') # offizielles Modell laden
model = YOLO('pfad/zu/best.pt') # benutzerdefiniertes Modell laden
# Mit dem Modell Vorhersagen treffen
results = model('https://ultralytics.com/images/bus.jpg') # Vorhersage auf einem Bild
```
=== "CLI"
```bash
yolo segment predict model=yolov8n-seg.pt source='https://ultralytics.com/images/bus.jpg' # Vorhersage mit offiziellem Modell treffen
yolo segment predict model=pfad/zu/best.pt source='https://ultralytics.com/images/bus.jpg' # Vorhersage mit benutzerdefiniertem Modell treffen
```
Die vollständigen Details zum predict
-Modus finden Sie auf der Seite Predict.
Export
Exportieren Sie ein YOLOv8n-seg-Modell in ein anderes Format wie ONNX, CoreML usw.
!!! Beispiel ""
=== "Python"
```python
from ultralytics import YOLO
# Modell laden
model = YOLO('yolov8n-seg.pt') # offizielles Modell laden
model = YOLO('pfad/zu/best.pt') # benutzerdefiniertes trainiertes Modell laden
# Das Modell exportieren
model.export(format='onnx')
```
=== "CLI"
```bash
yolo export model=yolov8n-seg.pt format=onnx # offizielles Modell exportieren
yolo export model=pfad/zu/best.pt format=onnx # benutzerdefiniertes trainiertes Modell exportieren
```
Die verfügbaren YOLOv8-seg-Exportformate sind in der folgenden Tabelle aufgeführt. Sie können direkt auf exportierten Modellen Vorhersagen treffen oder sie validieren, z.B. yolo predict model=yolov8n-seg.onnx
. Verwendungsbeispiele werden für Ihr Modell nach dem Export angezeigt.
Format | format -Argument |
Modell | Metadaten | Argumente |
---|---|---|---|---|
PyTorch | - | yolov8n-seg.pt |
✅ | - |
TorchScript | torchscript |
yolov8n-seg.torchscript |
✅ | imgsz , optimieren |
ONNX | onnx |
yolov8n-seg.onnx |
✅ | imgsz , halb , dynamisch , vereinfachen , opset |
OpenVINO | openvino |
yolov8n-seg_openvino_model/ |
✅ | imgsz , halb |
TensorRT | engine |
yolov8n-seg.engine |
✅ | imgsz , halb , dynamisch , vereinfachen , Arbeitsspeicher |
CoreML | coreml |
yolov8n-seg.mlpackage |
✅ | imgsz , halb , int8 , nms |
TF SavedModel | saved_model |
yolov8n-seg_saved_model/ |
✅ | imgsz , keras |
TF GraphDef | pb |
yolov8n-seg.pb |
❌ | imgsz |
TF Lite | tflite |
yolov8n-seg.tflite |
✅ | imgsz , halb , int8 |
TF Edge TPU | edgetpu |
yolov8n-seg_edgetpu.tflite |
✅ | imgsz |
TF.js | tfjs |
yolov8n-seg_web_model/ |
✅ | imgsz |
PaddlePaddle | paddle |
yolov8n-seg_paddle_model/ |
✅ | imgsz |
ncnn | ncnn |
yolov8n-seg_ncnn_model/ |
✅ | imgsz , halb |
Die vollständigen Details zum export
finden Sie auf der Seite Export.