You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

116 lines
3.7 KiB

import logging
import torch
from omegaconf import OmegaConf
from tqdm import tqdm
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
from ultralytics.yolo.utils import TQDM_BAR_FORMAT
from ultralytics.yolo.utils.ops import Profile
from ultralytics.yolo.utils.torch_utils import de_parallel, select_device
class BaseValidator:
"""
Base validator class.
"""
def __init__(self, dataloader, pbar=None, logger=None, args=None):
self.dataloader = dataloader
self.pbar = pbar
self.logger = logger or logging.getLogger()
self.args = args or OmegaConf.load(DEFAULT_CONFIG)
self.device = select_device(self.args.device, dataloader.batch_size)
self.cuda = self.device.type != 'cpu'
self.batch_i = None
self.training = True
def __call__(self, trainer=None, model=None):
"""
Supports validation of a pre-trained model if passed or a model being trained
if trainer is passed (trainer gets priority).
"""
self.training = trainer is not None
if self.training:
model = trainer.ema.ema or trainer.model
self.args.half &= self.device.type != 'cpu'
# NOTE: half() inference in evaluation will make training stuck,
# so I comment it out for now, I think we can reuse half mode after we add EMA.
model = model.half() if self.args.half else model.float()
else: # TODO: handle this when detectMultiBackend is supported
assert model is not None, "Either trainer or model is needed for validation"
# model = DetectMultiBacked(model)
# TODO: implement init_model_attributes()
model.eval()
dt = Profile(), Profile(), Profile(), Profile()
loss = 0
n_batches = len(self.dataloader)
desc = self.get_desc()
bar = tqdm(self.dataloader, desc, n_batches, not self.training, bar_format=TQDM_BAR_FORMAT)
self.init_metrics(de_parallel(model))
with torch.no_grad():
for batch_i, batch in enumerate(bar):
self.batch_i = batch_i
# pre-process
with dt[0]:
batch = self.preprocess(batch)
# inference
with dt[1]:
preds = model(batch["img"].float())
# TODO: remember to add native augmentation support when implementing model, like:
# preds, train_out = model(im, augment=augment)
# loss
with dt[2]:
if self.training:
loss += trainer.criterion(preds, batch)[0]
# pre-process predictions
with dt[3]:
preds = self.postprocess(preds)
self.update_metrics(preds, batch)
stats = self.get_stats()
self.check_stats(stats)
self.print_results()
# print speeds
if not self.training:
t = tuple(x.t / len(self.dataloader.dataset.samples) * 1E3 for x in dt) # speeds per image
# shape = (self.dataloader.batch_size, 3, imgsz, imgsz)
self.logger.info(
'Speed: %.1fms pre-process, %.1fms inference, %.1fms loss, %.1fms post-process per image at shape ' % t)
if self.training:
model.float()
# TODO: implement save json
return stats
def preprocess(self, batch):
return batch
def postprocess(self, preds):
return preds
def init_metrics(self):
pass
def update_metrics(self, preds, batch):
pass
def get_stats(self):
pass
def check_stats(self, stats):
pass
def print_results(self):
pass
def get_desc(self):
pass