2.7 KiB
Using YOLO models
This is the simplest way of simply using yolo models in a python environment. It can be imported from the ultralytics
module.
!!! example "Usage" === "Training" ```python from ultralytics import YOLO
model = YOLO("yolov8n.yaml")
model(img_tensor) # Or model.forward(). inference.
model.train(data="coco128.yaml", epochs=5)
```
=== "Training pretrained"
```python
from ultralytics import YOLO
model = YOLO("yolov8n.pt") # pass any model type
model(...) # inference
model.train(epochs=5)
```
=== "Resume Training"
```python
from ultralytics import YOLO
model = YOLO()
model.resume(task="detect") # resume last detection training
model.resume(model="last.pt") # resume from a given model/run
```
=== "Visualize/save Predictions"
```python
from ultralytics import YOLO
model = YOLO("model.pt")
model.predict(source="0") # accepts all formats - img/folder/vid.*(mp4/format). 0 for webcam
model.predict(source="folder", show=True) # Display preds. Accepts all yolo predict arguments
```
!!! note "Export and Deployment"
=== "Export, Fuse & info"
```python
from ultralytics import YOLO
model = YOLO("model.pt")
model.fuse()
model.info(verbose=True) # Print model information
model.export(format=) # TODO:
```
=== "Deployment"
More functionality coming soon
To know more about using YOLO
models, refer Model class Reference
Model reference{ .md-button .md-button--primary}
Using Trainers
YOLO
model class is a high-level wrapper on the Trainer classes. Each YOLO task has its own trainer that inherits from BaseTrainer
.
!!! tip "Detection Trainer Example"
```python
from ultralytics.yolo import v8 import DetectionTrainer, DetectionValidator, DetectionPredictor
# trainer
trainer = DetectionTrainer(overrides={})
trainer.train()
trained_model = trainer.best
# Validator
val = DetectionValidator(args=...)
val(model=trained_model)
# predictor
pred = DetectionPredictor(overrides={})
pred(source=SOURCE, model=trained_model)
# resume from last weight
overrides["resume"] = trainer.last
trainer = detect.DetectionTrainer(overrides=overrides)
```
You can easily customize Trainers to support custom tasks or explore R&D ideas.
Learn more about Customizing Trainers
, Validators
and Predictors
to suit your project needs in the Customization Section.
Customization tutorials{ .md-button .md-button--primary}