You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

121 lines
5.0 KiB

# Ultralytics YOLO 🚀, AGPL-3.0 license
"""
# RT-DETR model interface
"""
from pathlib import Path
from ultralytics.nn.tasks import DetectionModel, attempt_load_one_weight, yaml_model_load
from ultralytics.yolo.cfg import get_cfg
from ultralytics.yolo.engine.exporter import Exporter
from ultralytics.yolo.utils import DEFAULT_CFG, DEFAULT_CFG_DICT, LOGGER, ROOT, is_git_dir
from ultralytics.yolo.utils.checks import check_imgsz
from ultralytics.yolo.utils.torch_utils import model_info
from ...yolo.utils.torch_utils import smart_inference_mode
from .predict import RTDETRPredictor
from .val import RTDETRValidator
class RTDETR:
def __init__(self, model='rtdetr-l.pt') -> None:
if model and not model.endswith('.pt') and not model.endswith('.yaml'):
raise NotImplementedError('RT-DETR only supports creating from pt file or yaml file.')
# Load or create new YOLO model
self.predictor = None
suffix = Path(model).suffix
if suffix == '.yaml':
self._new(model)
else:
self._load(model)
def _new(self, cfg: str, verbose=True):
cfg_dict = yaml_model_load(cfg)
self.cfg = cfg
self.task = 'detect'
self.model = DetectionModel(cfg_dict, verbose=verbose) # build model
# Below added to allow export from yamls
self.model.args = DEFAULT_CFG_DICT # attach args to model
self.model.task = self.task
@smart_inference_mode()
def _load(self, weights: str):
self.model, _ = attempt_load_one_weight(weights)
self.model.args = DEFAULT_CFG_DICT # attach args to model
self.task = self.model.args['task']
@smart_inference_mode()
def predict(self, source=None, stream=False, **kwargs):
"""
Perform prediction using the YOLO model.
Args:
source (str | int | PIL | np.ndarray): The source of the image to make predictions on.
Accepts all source types accepted by the YOLO model.
stream (bool): Whether to stream the predictions or not. Defaults to False.
**kwargs : Additional keyword arguments passed to the predictor.
Check the 'configuration' section in the documentation for all available options.
Returns:
(List[ultralytics.yolo.engine.results.Results]): The prediction results.
"""
if source is None:
source = ROOT / 'assets' if is_git_dir() else 'https://ultralytics.com/images/bus.jpg'
LOGGER.warning(f"WARNING ⚠ 'source' is missing. Using 'source={source}'.")
overrides = dict(conf=0.25, task='detect', mode='predict')
overrides.update(kwargs) # prefer kwargs
if not self.predictor:
self.predictor = RTDETRPredictor(overrides=overrides)
self.predictor.setup_model(model=self.model)
else: # only update args if predictor is already setup
self.predictor.args = get_cfg(self.predictor.args, overrides)
return self.predictor(source, stream=stream)
def train(self, **kwargs):
"""Function trains models but raises an error as RTDETR models do not support training."""
raise NotImplementedError("RTDETR models don't support training")
def val(self, **kwargs):
"""Run validation given dataset."""
overrides = dict(task='detect', mode='val')
overrides.update(kwargs) # prefer kwargs
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
args.imgsz = check_imgsz(args.imgsz, max_dim=1)
validator = RTDETRValidator(args=args)
validator(model=self.model)
self.metrics = validator.metrics
return validator.metrics
def info(self, verbose=True):
"""Get model info"""
return model_info(self.model, verbose=verbose)
@smart_inference_mode()
def export(self, **kwargs):
"""
Export model.
Args:
**kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs
"""
overrides = dict(task='detect')
overrides.update(kwargs)
overrides['mode'] = 'export'
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
args.task = self.task
if args.imgsz == DEFAULT_CFG.imgsz:
args.imgsz = self.model.args['imgsz'] # use trained imgsz unless custom value is passed
if args.batch == DEFAULT_CFG.batch:
args.batch = 1 # default to 1 if not modified
return Exporter(overrides=args)(model=self.model)
def __call__(self, source=None, stream=False, **kwargs):
"""Calls the 'predict' function with given arguments to perform object detection."""
return self.predict(source, stream, **kwargs)
def __getattr__(self, attr):
"""Raises error if object has no requested attribute."""
name = self.__class__.__name__
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")