You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

43 lines
2.2 KiB

from ultralytics.yolo.utils import LOGGER
try:
from ray import tune
from ray.air import RunConfig, session # noqa
from ray.air.integrations.wandb import WandbLoggerCallback # noqa
from ray.tune.schedulers import ASHAScheduler # noqa
from ray.tune.schedulers import AsyncHyperBandScheduler as AHB # noqa
except ImportError:
LOGGER.info("Tuning hyperparameters requires ray/tune. Install using `pip install 'ray[tune]'`")
tune = None
default_space = {
# 'optimizer': tune.choice(['SGD', 'Adam', 'AdamW', 'RMSProp']),
'lr0': tune.uniform(1e-5, 1e-1),
'lrf': tune.uniform(0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
'momentum': tune.uniform(0.6, 0.98), # SGD momentum/Adam beta1
'weight_decay': tune.uniform(0.0, 0.001), # optimizer weight decay 5e-4
'warmup_epochs': tune.uniform(0.0, 5.0), # warmup epochs (fractions ok)
'warmup_momentum': tune.uniform(0.0, 0.95), # warmup initial momentum
'box': tune.uniform(0.02, 0.2), # box loss gain
'cls': tune.uniform(0.2, 4.0), # cls loss gain (scale with pixels)
'fl_gamma': tune.uniform(0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
'hsv_h': tune.uniform(0.0, 0.1), # image HSV-Hue augmentation (fraction)
'hsv_s': tune.uniform(0.0, 0.9), # image HSV-Saturation augmentation (fraction)
'hsv_v': tune.uniform(0.0, 0.9), # image HSV-Value augmentation (fraction)
'degrees': tune.uniform(0.0, 45.0), # image rotation (+/- deg)
'translate': tune.uniform(0.0, 0.9), # image translation (+/- fraction)
'scale': tune.uniform(0.0, 0.9), # image scale (+/- gain)
'shear': tune.uniform(0.0, 10.0), # image shear (+/- deg)
'perspective': tune.uniform(0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
'flipud': tune.uniform(0.0, 1.0), # image flip up-down (probability)
'fliplr': tune.uniform(0.0, 1.0), # image flip left-right (probability)
'mosaic': tune.uniform(0.0, 1.0), # image mixup (probability)
'mixup': tune.uniform(0.0, 1.0), # image mixup (probability)
'copy_paste': tune.uniform(0.0, 1.0)} # segment copy-paste (probability)
task_metric_map = {
'detect': 'metrics/mAP50-95(B)',
'segment': 'metrics/mAP50-95(M)',
'classify': 'top1_acc',
'pose': None}