You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

448 lines
20 KiB

# Ultralytics YOLO 🚀, AGPL-3.0 license
import math
import os
import platform
import random
import time
from contextlib import contextmanager
from copy import deepcopy
from pathlib import Path
from typing import Union
import numpy as np
import thop
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from ultralytics.yolo.utils import DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, RANK, __version__
from ultralytics.yolo.utils.checks import check_version
TORCHVISION_0_10 = check_version(torchvision.__version__, '0.10.0')
TORCH_1_9 = check_version(torch.__version__, '1.9.0')
TORCH_1_11 = check_version(torch.__version__, '1.11.0')
TORCH_1_12 = check_version(torch.__version__, '1.12.0')
TORCH_2_X = check_version(torch.__version__, minimum='2.0')
@contextmanager
def torch_distributed_zero_first(local_rank: int):
"""Decorator to make all processes in distributed training wait for each local_master to do something."""
initialized = torch.distributed.is_available() and torch.distributed.is_initialized()
if initialized and local_rank not in (-1, 0):
dist.barrier(device_ids=[local_rank])
yield
if initialized and local_rank == 0:
dist.barrier(device_ids=[0])
def smart_inference_mode():
"""Applies torch.inference_mode() decorator if torch>=1.9.0 else torch.no_grad() decorator."""
def decorate(fn):
"""Applies appropriate torch decorator for inference mode based on torch version."""
return (torch.inference_mode if TORCH_1_9 else torch.no_grad)()(fn)
return decorate
def select_device(device='', batch=0, newline=False, verbose=True):
"""Selects PyTorch Device. Options are device = None or 'cpu' or 0 or '0' or '0,1,2,3'."""
s = f'Ultralytics YOLOv{__version__} 🚀 Python-{platform.python_version()} torch-{torch.__version__} '
device = str(device).lower()
for remove in 'cuda:', 'none', '(', ')', '[', ']', "'", ' ':
device = device.replace(remove, '') # to string, 'cuda:0' -> '0' and '(0, 1)' -> '0,1'
cpu = device == 'cpu'
mps = device == 'mps' # Apple Metal Performance Shaders (MPS)
if cpu or mps:
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
elif device: # non-cpu device requested
visible = os.environ.get('CUDA_VISIBLE_DEVICES', None)
os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable - must be before assert is_available()
if not (torch.cuda.is_available() and torch.cuda.device_count() >= len(device.replace(',', ''))):
LOGGER.info(s)
install = 'See https://pytorch.org/get-started/locally/ for up-to-date torch install instructions if no ' \
'CUDA devices are seen by torch.\n' if torch.cuda.device_count() == 0 else ''
raise ValueError(f"Invalid CUDA 'device={device}' requested."
f" Use 'device=cpu' or pass valid CUDA device(s) if available,"
f" i.e. 'device=0' or 'device=0,1,2,3' for Multi-GPU.\n"
f'\ntorch.cuda.is_available(): {torch.cuda.is_available()}'
f'\ntorch.cuda.device_count(): {torch.cuda.device_count()}'
f"\nos.environ['CUDA_VISIBLE_DEVICES']: {visible}\n"
f'{install}')
if not cpu and not mps and torch.cuda.is_available(): # prefer GPU if available
devices = device.split(',') if device else '0' # range(torch.cuda.device_count()) # i.e. 0,1,6,7
n = len(devices) # device count
if n > 1 and batch > 0 and batch % n != 0: # check batch_size is divisible by device_count
raise ValueError(f"'batch={batch}' must be a multiple of GPU count {n}. Try 'batch={batch // n * n}' or "
f"'batch={batch // n * n + n}', the nearest batch sizes evenly divisible by {n}.")
space = ' ' * (len(s) + 1)
for i, d in enumerate(devices):
p = torch.cuda.get_device_properties(i)
s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / (1 << 20):.0f}MiB)\n" # bytes to MB
arg = 'cuda:0'
elif mps and getattr(torch, 'has_mps', False) and torch.backends.mps.is_available() and TORCH_2_X:
# Prefer MPS if available
s += 'MPS\n'
arg = 'mps'
else: # revert to CPU
s += 'CPU\n'
arg = 'cpu'
if verbose and RANK == -1:
LOGGER.info(s if newline else s.rstrip())
return torch.device(arg)
def time_sync():
"""PyTorch-accurate time."""
if torch.cuda.is_available():
torch.cuda.synchronize()
return time.time()
def fuse_conv_and_bn(conv, bn):
"""Fuse Conv2d() and BatchNorm2d() layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/."""
fusedconv = nn.Conv2d(conv.in_channels,
conv.out_channels,
kernel_size=conv.kernel_size,
stride=conv.stride,
padding=conv.padding,
dilation=conv.dilation,
groups=conv.groups,
bias=True).requires_grad_(False).to(conv.weight.device)
# Prepare filters
w_conv = conv.weight.clone().view(conv.out_channels, -1)
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
# Prepare spatial bias
b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
return fusedconv
def fuse_deconv_and_bn(deconv, bn):
"""Fuse ConvTranspose2d() and BatchNorm2d() layers."""
fuseddconv = nn.ConvTranspose2d(deconv.in_channels,
deconv.out_channels,
kernel_size=deconv.kernel_size,
stride=deconv.stride,
padding=deconv.padding,
output_padding=deconv.output_padding,
dilation=deconv.dilation,
groups=deconv.groups,
bias=True).requires_grad_(False).to(deconv.weight.device)
# Prepare filters
w_deconv = deconv.weight.clone().view(deconv.out_channels, -1)
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
fuseddconv.weight.copy_(torch.mm(w_bn, w_deconv).view(fuseddconv.weight.shape))
# Prepare spatial bias
b_conv = torch.zeros(deconv.weight.size(1), device=deconv.weight.device) if deconv.bias is None else deconv.bias
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
fuseddconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
return fuseddconv
def model_info(model, detailed=False, verbose=True, imgsz=640):
"""Model information. imgsz may be int or list, i.e. imgsz=640 or imgsz=[640, 320]."""
if not verbose:
return
n_p = get_num_params(model)
n_g = get_num_gradients(model) # number gradients
if detailed:
LOGGER.info(
f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}")
for i, (name, p) in enumerate(model.named_parameters()):
name = name.replace('module_list.', '')
LOGGER.info('%5g %40s %9s %12g %20s %10.3g %10.3g' %
(i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
flops = get_flops(model, imgsz)
fused = ' (fused)' if model.is_fused() else ''
fs = f', {flops:.1f} GFLOPs' if flops else ''
m = Path(getattr(model, 'yaml_file', '') or model.yaml.get('yaml_file', '')).stem.replace('yolo', 'YOLO') or 'Model'
LOGGER.info(f'{m} summary{fused}: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}')
def get_num_params(model):
"""Return the total number of parameters in a YOLO model."""
return sum(x.numel() for x in model.parameters())
def get_num_gradients(model):
"""Return the total number of parameters with gradients in a YOLO model."""
return sum(x.numel() for x in model.parameters() if x.requires_grad)
def get_flops(model, imgsz=640):
"""Return a YOLO model's FLOPs."""
try:
model = de_parallel(model)
p = next(model.parameters())
stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32 # max stride
im = torch.empty((1, p.shape[1], stride, stride), device=p.device) # input image in BCHW format
flops = thop.profile(deepcopy(model), inputs=[im], verbose=False)[0] / 1E9 * 2 # stride GFLOPs
imgsz = imgsz if isinstance(imgsz, list) else [imgsz, imgsz] # expand if int/float
flops = flops * imgsz[0] / stride * imgsz[1] / stride # 640x640 GFLOPs
return flops
except Exception:
return 0
def initialize_weights(model):
"""Initialize model weights to random values."""
for m in model.modules():
t = type(m)
if t is nn.Conv2d:
pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif t is nn.BatchNorm2d:
m.eps = 1e-3
m.momentum = 0.03
elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
m.inplace = True
def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416)
# Scales img(bs,3,y,x) by ratio constrained to gs-multiple
if ratio == 1.0:
return img
h, w = img.shape[2:]
s = (int(h * ratio), int(w * ratio)) # new size
img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
if not same_shape: # pad/crop img
h, w = (math.ceil(x * ratio / gs) * gs for x in (h, w))
return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
def make_divisible(x, divisor):
"""Returns nearest x divisible by divisor."""
if isinstance(divisor, torch.Tensor):
divisor = int(divisor.max()) # to int
return math.ceil(x / divisor) * divisor
def copy_attr(a, b, include=(), exclude=()):
"""Copies attributes from object 'b' to object 'a', with options to include/exclude certain attributes."""
for k, v in b.__dict__.items():
if (len(include) and k not in include) or k.startswith('_') or k in exclude:
continue
else:
setattr(a, k, v)
def get_latest_opset():
"""Return second-most (for maturity) recently supported ONNX opset by this version of torch."""
return max(int(k[14:]) for k in vars(torch.onnx) if 'symbolic_opset' in k) - 1 # opset
def intersect_dicts(da, db, exclude=()):
"""Returns a dictionary of intersecting keys with matching shapes, excluding 'exclude' keys, using da values."""
return {k: v for k, v in da.items() if k in db and all(x not in k for x in exclude) and v.shape == db[k].shape}
def is_parallel(model):
"""Returns True if model is of type DP or DDP."""
return isinstance(model, (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel))
def de_parallel(model):
"""De-parallelize a model: returns single-GPU model if model is of type DP or DDP."""
return model.module if is_parallel(model) else model
def one_cycle(y1=0.0, y2=1.0, steps=100):
"""Returns a lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf."""
return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
def init_seeds(seed=0, deterministic=False):
"""Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html."""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # for Multi-GPU, exception safe
# torch.backends.cudnn.benchmark = True # AutoBatch problem https://github.com/ultralytics/yolov5/issues/9287
if deterministic and TORCH_1_12: # https://github.com/ultralytics/yolov5/pull/8213
torch.use_deterministic_algorithms(True)
torch.backends.cudnn.deterministic = True
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
os.environ['PYTHONHASHSEED'] = str(seed)
class ModelEMA:
"""Updated Exponential Moving Average (EMA) from https://github.com/rwightman/pytorch-image-models
Keeps a moving average of everything in the model state_dict (parameters and buffers)
For EMA details see https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
To disable EMA set the `enabled` attribute to `False`.
"""
def __init__(self, model, decay=0.9999, tau=2000, updates=0):
"""Create EMA."""
self.ema = deepcopy(de_parallel(model)).eval() # FP32 EMA
self.updates = updates # number of EMA updates
self.decay = lambda x: decay * (1 - math.exp(-x / tau)) # decay exponential ramp (to help early epochs)
for p in self.ema.parameters():
p.requires_grad_(False)
self.enabled = True
def update(self, model):
"""Update EMA parameters."""
if self.enabled:
self.updates += 1
d = self.decay(self.updates)
msd = de_parallel(model).state_dict() # model state_dict
for k, v in self.ema.state_dict().items():
if v.dtype.is_floating_point: # true for FP16 and FP32
v *= d
v += (1 - d) * msd[k].detach()
# assert v.dtype == msd[k].dtype == torch.float32, f'{k}: EMA {v.dtype}, model {msd[k].dtype}'
def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
"""Updates attributes and saves stripped model with optimizer removed."""
if self.enabled:
copy_attr(self.ema, model, include, exclude)
def strip_optimizer(f: Union[str, Path] = 'best.pt', s: str = '') -> None:
"""
Strip optimizer from 'f' to finalize training, optionally save as 's'.
Args:
f (str): file path to model to strip the optimizer from. Default is 'best.pt'.
s (str): file path to save the model with stripped optimizer to. If not provided, 'f' will be overwritten.
Returns:
None
Usage:
from pathlib import Path
from ultralytics.yolo.utils.torch_utils import strip_optimizer
for f in Path('/Users/glennjocher/Downloads/weights').rglob('*.pt'):
strip_optimizer(f)
"""
x = torch.load(f, map_location=torch.device('cpu'))
args = {**DEFAULT_CFG_DICT, **x['train_args']} # combine model args with default args, preferring model args
if x.get('ema'):
x['model'] = x['ema'] # replace model with ema
for k in 'optimizer', 'best_fitness', 'ema', 'updates': # keys
x[k] = None
x['epoch'] = -1
x['model'].half() # to FP16
for p in x['model'].parameters():
p.requires_grad = False
x['train_args'] = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS} # strip non-default keys
# x['model'].args = x['train_args']
torch.save(x, s or f)
mb = os.path.getsize(s or f) / 1E6 # filesize
LOGGER.info(f"Optimizer stripped from {f},{f' saved as {s},' if s else ''} {mb:.1f}MB")
def profile(input, ops, n=10, device=None):
"""
YOLOv8 speed/memory/FLOPs profiler
Usage:
input = torch.randn(16, 3, 640, 640)
m1 = lambda x: x * torch.sigmoid(x)
m2 = nn.SiLU()
profile(input, [m1, m2], n=100) # profile over 100 iterations
"""
results = []
if not isinstance(device, torch.device):
device = select_device(device)
LOGGER.info(f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}"
f"{'input':>24s}{'output':>24s}")
for x in input if isinstance(input, list) else [input]:
x = x.to(device)
x.requires_grad = True
for m in ops if isinstance(ops, list) else [ops]:
m = m.to(device) if hasattr(m, 'to') else m # device
m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m
tf, tb, t = 0, 0, [0, 0, 0] # dt forward, backward
try:
flops = thop.profile(m, inputs=[x], verbose=False)[0] / 1E9 * 2 # GFLOPs
except Exception:
flops = 0
try:
for _ in range(n):
t[0] = time_sync()
y = m(x)
t[1] = time_sync()
try:
_ = (sum(yi.sum() for yi in y) if isinstance(y, list) else y).sum().backward()
t[2] = time_sync()
except Exception: # no backward method
# print(e) # for debug
t[2] = float('nan')
tf += (t[1] - t[0]) * 1000 / n # ms per op forward
tb += (t[2] - t[1]) * 1000 / n # ms per op backward
mem = torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0 # (GB)
s_in, s_out = (tuple(x.shape) if isinstance(x, torch.Tensor) else 'list' for x in (x, y)) # shapes
p = sum(x.numel() for x in m.parameters()) if isinstance(m, nn.Module) else 0 # parameters
LOGGER.info(f'{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}')
results.append([p, flops, mem, tf, tb, s_in, s_out])
except Exception as e:
LOGGER.info(e)
results.append(None)
torch.cuda.empty_cache()
return results
class EarlyStopping:
"""
Early stopping class that stops training when a specified number of epochs have passed without improvement.
"""
def __init__(self, patience=50):
"""
Initialize early stopping object
Args:
patience (int, optional): Number of epochs to wait after fitness stops improving before stopping.
"""
self.best_fitness = 0.0 # i.e. mAP
self.best_epoch = 0
self.patience = patience or float('inf') # epochs to wait after fitness stops improving to stop
self.possible_stop = False # possible stop may occur next epoch
def __call__(self, epoch, fitness):
"""
Check whether to stop training
Args:
epoch (int): Current epoch of training
fitness (float): Fitness value of current epoch
Returns:
(bool): True if training should stop, False otherwise
"""
if fitness is None: # check if fitness=None (happens when val=False)
return False
if fitness >= self.best_fitness: # >= 0 to allow for early zero-fitness stage of training
self.best_epoch = epoch
self.best_fitness = fitness
delta = epoch - self.best_epoch # epochs without improvement
self.possible_stop = delta >= (self.patience - 1) # possible stop may occur next epoch
stop = delta >= self.patience # stop training if patience exceeded
if stop:
LOGGER.info(f'Stopping training early as no improvement observed in last {self.patience} epochs. '
f'Best results observed at epoch {self.best_epoch}, best model saved as best.pt.\n'
f'To update EarlyStopping(patience={self.patience}) pass a new patience value, '
f'i.e. `patience=300` or use `patience=0` to disable EarlyStopping.')
return stop