|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license |
|
|
""" |
|
|
Ultralytics Results, Boxes and Masks classes for handling inference results |
|
|
|
|
|
Usage: See https://docs.ultralytics.com/modes/predict/ |
|
|
""" |
|
|
|
|
|
from copy import deepcopy |
|
|
from functools import lru_cache |
|
|
from pathlib import Path |
|
|
|
|
|
import numpy as np |
|
|
import torch |
|
|
|
|
|
from ultralytics.yolo.data.augment import LetterBox |
|
|
from ultralytics.yolo.utils import LOGGER, SimpleClass, deprecation_warn, ops |
|
|
from ultralytics.yolo.utils.plotting import Annotator, colors, save_one_box |
|
|
|
|
|
|
|
|
class BaseTensor(SimpleClass): |
|
|
""" |
|
|
Base tensor class with additional methods for easy manipulation and device handling. |
|
|
""" |
|
|
|
|
|
def __init__(self, data, orig_shape) -> None: |
|
|
"""Initialize BaseTensor with data and original shape.""" |
|
|
self.data = data |
|
|
self.orig_shape = orig_shape |
|
|
|
|
|
@property |
|
|
def shape(self): |
|
|
"""Return the shape of the data tensor.""" |
|
|
return self.data.shape |
|
|
|
|
|
def cpu(self): |
|
|
"""Return a copy of the tensor on CPU memory.""" |
|
|
return self.__class__(self.data.cpu(), self.orig_shape) |
|
|
|
|
|
def numpy(self): |
|
|
"""Return a copy of the tensor as a numpy array.""" |
|
|
return self.__class__(self.data.numpy(), self.orig_shape) |
|
|
|
|
|
def cuda(self): |
|
|
"""Return a copy of the tensor on GPU memory.""" |
|
|
return self.__class__(self.data.cuda(), self.orig_shape) |
|
|
|
|
|
def to(self, *args, **kwargs): |
|
|
"""Return a copy of the tensor with the specified device and dtype.""" |
|
|
return self.__class__(self.data.to(*args, **kwargs), self.orig_shape) |
|
|
|
|
|
def __len__(self): # override len(results) |
|
|
"""Return the length of the data tensor.""" |
|
|
return len(self.data) |
|
|
|
|
|
def __getitem__(self, idx): |
|
|
"""Return a BaseTensor with the specified index of the data tensor.""" |
|
|
return self.__class__(self.data[idx], self.orig_shape) |
|
|
|
|
|
|
|
|
class Results(SimpleClass): |
|
|
""" |
|
|
A class for storing and manipulating inference results. |
|
|
|
|
|
Args: |
|
|
orig_img (numpy.ndarray): The original image as a numpy array. |
|
|
path (str): The path to the image file. |
|
|
names (dict): A dictionary of class names. |
|
|
boxes (List[List[float]], optional): A list of bounding box coordinates for each detection. |
|
|
masks (numpy.ndarray, optional): A 3D numpy array of detection masks, where each mask is a binary image. |
|
|
probs (numpy.ndarray, optional): A 2D numpy array of detection probabilities for each class. |
|
|
keypoints (List[List[float]], optional): A list of detected keypoints for each object. |
|
|
|
|
|
|
|
|
Attributes: |
|
|
orig_img (numpy.ndarray): The original image as a numpy array. |
|
|
orig_shape (tuple): The original image shape in (height, width) format. |
|
|
boxes (Boxes, optional): A Boxes object containing the detection bounding boxes. |
|
|
masks (Masks, optional): A Masks object containing the detection masks. |
|
|
probs (numpy.ndarray, optional): A 2D numpy array of detection probabilities for each class. |
|
|
names (dict): A dictionary of class names. |
|
|
path (str): The path to the image file. |
|
|
keypoints (List[List[float]], optional): A list of detected keypoints for each object. |
|
|
speed (dict): A dictionary of preprocess, inference and postprocess speeds in milliseconds per image. |
|
|
_keys (tuple): A tuple of attribute names for non-empty attributes. |
|
|
""" |
|
|
|
|
|
def __init__(self, orig_img, path, names, boxes=None, masks=None, probs=None, keypoints=None) -> None: |
|
|
"""Initialize the Results class.""" |
|
|
self.orig_img = orig_img |
|
|
self.orig_shape = orig_img.shape[:2] |
|
|
self.boxes = Boxes(boxes, self.orig_shape) if boxes is not None else None # native size boxes |
|
|
self.masks = Masks(masks, self.orig_shape) if masks is not None else None # native size or imgsz masks |
|
|
self.probs = probs if probs is not None else None |
|
|
self.keypoints = keypoints if keypoints is not None else None |
|
|
self.speed = {'preprocess': None, 'inference': None, 'postprocess': None} # milliseconds per image |
|
|
self.names = names |
|
|
self.path = path |
|
|
self._keys = ('boxes', 'masks', 'probs', 'keypoints') |
|
|
|
|
|
def __getitem__(self, idx): |
|
|
"""Return a Results object for the specified index.""" |
|
|
r = self.new() |
|
|
for k in self.keys: |
|
|
setattr(r, k, getattr(self, k)[idx]) |
|
|
return r |
|
|
|
|
|
def update(self, boxes=None, masks=None, probs=None): |
|
|
"""Update the boxes, masks, and probs attributes of the Results object.""" |
|
|
if boxes is not None: |
|
|
self.boxes = Boxes(boxes, self.orig_shape) |
|
|
if masks is not None: |
|
|
self.masks = Masks(masks, self.orig_shape) |
|
|
if probs is not None: |
|
|
self.probs = probs |
|
|
|
|
|
def cpu(self): |
|
|
"""Return a copy of the Results object with all tensors on CPU memory.""" |
|
|
r = self.new() |
|
|
for k in self.keys: |
|
|
setattr(r, k, getattr(self, k).cpu()) |
|
|
return r |
|
|
|
|
|
def numpy(self): |
|
|
"""Return a copy of the Results object with all tensors as numpy arrays.""" |
|
|
r = self.new() |
|
|
for k in self.keys: |
|
|
setattr(r, k, getattr(self, k).numpy()) |
|
|
return r |
|
|
|
|
|
def cuda(self): |
|
|
"""Return a copy of the Results object with all tensors on GPU memory.""" |
|
|
r = self.new() |
|
|
for k in self.keys: |
|
|
setattr(r, k, getattr(self, k).cuda()) |
|
|
return r |
|
|
|
|
|
def to(self, *args, **kwargs): |
|
|
"""Return a copy of the Results object with tensors on the specified device and dtype.""" |
|
|
r = self.new() |
|
|
for k in self.keys: |
|
|
setattr(r, k, getattr(self, k).to(*args, **kwargs)) |
|
|
return r |
|
|
|
|
|
def __len__(self): |
|
|
"""Return the number of detections in the Results object.""" |
|
|
for k in self.keys: |
|
|
return len(getattr(self, k)) |
|
|
|
|
|
def new(self): |
|
|
"""Return a new Results object with the same image, path, and names.""" |
|
|
return Results(orig_img=self.orig_img, path=self.path, names=self.names) |
|
|
|
|
|
@property |
|
|
def keys(self): |
|
|
"""Return a list of non-empty attribute names.""" |
|
|
return [k for k in self._keys if getattr(self, k) is not None] |
|
|
|
|
|
def plot( |
|
|
self, |
|
|
conf=True, |
|
|
line_width=None, |
|
|
font_size=None, |
|
|
font='Arial.ttf', |
|
|
pil=False, |
|
|
img=None, |
|
|
img_gpu=None, |
|
|
kpt_line=True, |
|
|
labels=True, |
|
|
boxes=True, |
|
|
masks=True, |
|
|
probs=True, |
|
|
**kwargs # deprecated args TODO: remove support in 8.2 |
|
|
): |
|
|
""" |
|
|
Plots the detection results on an input RGB image. Accepts a numpy array (cv2) or a PIL Image. |
|
|
|
|
|
Args: |
|
|
conf (bool): Whether to plot the detection confidence score. |
|
|
line_width (float, optional): The line width of the bounding boxes. If None, it is scaled to the image size. |
|
|
font_size (float, optional): The font size of the text. If None, it is scaled to the image size. |
|
|
font (str): The font to use for the text. |
|
|
pil (bool): Whether to return the image as a PIL Image. |
|
|
img (numpy.ndarray): Plot to another image. if not, plot to original image. |
|
|
img_gpu (torch.Tensor): Normalized image in gpu with shape (1, 3, 640, 640), for faster mask plotting. |
|
|
kpt_line (bool): Whether to draw lines connecting keypoints. |
|
|
labels (bool): Whether to plot the label of bounding boxes. |
|
|
boxes (bool): Whether to plot the bounding boxes. |
|
|
masks (bool): Whether to plot the masks. |
|
|
probs (bool): Whether to plot classification probability |
|
|
|
|
|
Returns: |
|
|
(numpy.ndarray): A numpy array of the annotated image. |
|
|
""" |
|
|
# Deprecation warn TODO: remove in 8.2 |
|
|
if 'show_conf' in kwargs: |
|
|
deprecation_warn('show_conf', 'conf') |
|
|
conf = kwargs['show_conf'] |
|
|
assert type(conf) == bool, '`show_conf` should be of boolean type, i.e, show_conf=True/False' |
|
|
|
|
|
names = self.names |
|
|
annotator = Annotator(deepcopy(self.orig_img if img is None else img), |
|
|
line_width, |
|
|
font_size, |
|
|
font, |
|
|
pil, |
|
|
example=names) |
|
|
pred_boxes, show_boxes = self.boxes, boxes |
|
|
pred_masks, show_masks = self.masks, masks |
|
|
pred_probs, show_probs = self.probs, probs |
|
|
keypoints = self.keypoints |
|
|
if pred_masks and show_masks: |
|
|
if img_gpu is None: |
|
|
img = LetterBox(pred_masks.shape[1:])(image=annotator.result()) |
|
|
img_gpu = torch.as_tensor(img, dtype=torch.float16, device=pred_masks.data.device).permute( |
|
|
2, 0, 1).flip(0).contiguous() / 255 |
|
|
annotator.masks(pred_masks.data, colors=[colors(x, True) for x in pred_boxes.cls], im_gpu=img_gpu) |
|
|
|
|
|
if pred_boxes and show_boxes: |
|
|
for d in reversed(pred_boxes): |
|
|
c, conf, id = int(d.cls), float(d.conf) if conf else None, None if d.id is None else int(d.id.item()) |
|
|
name = ('' if id is None else f'id:{id} ') + names[c] |
|
|
label = (f'{name} {conf:.2f}' if conf else name) if labels else None |
|
|
annotator.box_label(d.xyxy.squeeze(), label, color=colors(c, True)) |
|
|
|
|
|
if pred_probs is not None and show_probs: |
|
|
n5 = min(len(names), 5) |
|
|
top5i = pred_probs.argsort(0, descending=True)[:n5].tolist() # top 5 indices |
|
|
text = f"{', '.join(f'{names[j] if names else j} {pred_probs[j]:.2f}' for j in top5i)}, " |
|
|
annotator.text((32, 32), text, txt_color=(255, 255, 255)) # TODO: allow setting colors |
|
|
|
|
|
if keypoints is not None: |
|
|
for k in reversed(keypoints): |
|
|
annotator.kpts(k, self.orig_shape, kpt_line=kpt_line) |
|
|
|
|
|
return annotator.result() |
|
|
|
|
|
def verbose(self): |
|
|
""" |
|
|
Return log string for each task. |
|
|
""" |
|
|
log_string = '' |
|
|
probs = self.probs |
|
|
boxes = self.boxes |
|
|
if len(self) == 0: |
|
|
return log_string if probs is not None else f'{log_string}(no detections), ' |
|
|
if probs is not None: |
|
|
n5 = min(len(self.names), 5) |
|
|
top5i = probs.argsort(0, descending=True)[:n5].tolist() # top 5 indices |
|
|
log_string += f"{', '.join(f'{self.names[j]} {probs[j]:.2f}' for j in top5i)}, " |
|
|
if boxes: |
|
|
for c in boxes.cls.unique(): |
|
|
n = (boxes.cls == c).sum() # detections per class |
|
|
log_string += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " |
|
|
return log_string |
|
|
|
|
|
def save_txt(self, txt_file, save_conf=False): |
|
|
""" |
|
|
Save predictions into txt file. |
|
|
|
|
|
Args: |
|
|
txt_file (str): txt file path. |
|
|
save_conf (bool): save confidence score or not. |
|
|
""" |
|
|
boxes = self.boxes |
|
|
masks = self.masks |
|
|
probs = self.probs |
|
|
kpts = self.keypoints |
|
|
texts = [] |
|
|
if probs is not None: |
|
|
# Classify |
|
|
n5 = min(len(self.names), 5) |
|
|
top5i = probs.argsort(0, descending=True)[:n5].tolist() # top 5 indices |
|
|
[texts.append(f'{probs[j]:.2f} {self.names[j]}') for j in top5i] |
|
|
elif boxes: |
|
|
# Detect/segment/pose |
|
|
for j, d in enumerate(boxes): |
|
|
c, conf, id = int(d.cls), float(d.conf), None if d.id is None else int(d.id.item()) |
|
|
line = (c, *d.xywhn.view(-1)) |
|
|
if masks: |
|
|
seg = masks[j].xyn[0].copy().reshape(-1) # reversed mask.xyn, (n,2) to (n*2) |
|
|
line = (c, *seg) |
|
|
if kpts is not None: |
|
|
kpt = (kpts[j][:, :2] / d.orig_shape[[1, 0]]).reshape(-1).tolist() |
|
|
line += (*kpt, ) |
|
|
line += (conf, ) * save_conf + (() if id is None else (id, )) |
|
|
texts.append(('%g ' * len(line)).rstrip() % line) |
|
|
|
|
|
if texts: |
|
|
with open(txt_file, 'a') as f: |
|
|
f.writelines(text + '\n' for text in texts) |
|
|
|
|
|
def save_crop(self, save_dir, file_name=Path('im.jpg')): |
|
|
""" |
|
|
Save cropped predictions to `save_dir/cls/file_name.jpg`. |
|
|
|
|
|
Args: |
|
|
save_dir (str | pathlib.Path): Save path. |
|
|
file_name (str | pathlib.Path): File name. |
|
|
""" |
|
|
if self.probs is not None: |
|
|
LOGGER.warning('Warning: Classify task do not support `save_crop`.') |
|
|
return |
|
|
if isinstance(save_dir, str): |
|
|
save_dir = Path(save_dir) |
|
|
if isinstance(file_name, str): |
|
|
file_name = Path(file_name) |
|
|
for d in self.boxes: |
|
|
save_one_box(d.xyxy, |
|
|
self.orig_img.copy(), |
|
|
file=save_dir / self.names[int(d.cls)] / f'{file_name.stem}.jpg', |
|
|
BGR=True) |
|
|
|
|
|
def pandas(self): |
|
|
"""Convert the object to a pandas DataFrame (not yet implemented).""" |
|
|
LOGGER.warning("WARNING ⚠️ 'Results.pandas' method is not yet implemented.") |
|
|
|
|
|
def tojson(self, normalize=False): |
|
|
"""Convert the object to JSON format.""" |
|
|
import json |
|
|
|
|
|
# Create list of detection dictionaries |
|
|
results = [] |
|
|
data = self.boxes.data.cpu().tolist() |
|
|
h, w = self.orig_shape if normalize else (1, 1) |
|
|
for i, row in enumerate(data): |
|
|
box = {'x1': row[0] / w, 'y1': row[1] / h, 'x2': row[2] / w, 'y2': row[3] / h} |
|
|
conf = row[4] |
|
|
id = int(row[5]) |
|
|
name = self.names[id] |
|
|
result = {'name': name, 'class': id, 'confidence': conf, 'box': box} |
|
|
if self.masks: |
|
|
x, y = self.masks.xy[i][:, 0], self.masks.xy[i][:, 1] # numpy array |
|
|
result['segments'] = {'x': (x / w).tolist(), 'y': (y / h).tolist()} |
|
|
if self.keypoints is not None: |
|
|
x, y, visible = self.keypoints[i].cpu().unbind(dim=1) # torch Tensor |
|
|
result['keypoints'] = {'x': (x / w).tolist(), 'y': (y / h).tolist(), 'visible': visible.tolist()} |
|
|
results.append(result) |
|
|
|
|
|
# Convert detections to JSON |
|
|
return json.dumps(results, indent=2) |
|
|
|
|
|
|
|
|
class Boxes(BaseTensor): |
|
|
""" |
|
|
A class for storing and manipulating detection boxes. |
|
|
|
|
|
Args: |
|
|
boxes (torch.Tensor) or (numpy.ndarray): A tensor or numpy array containing the detection boxes, |
|
|
with shape (num_boxes, 6). The last two columns should contain confidence and class values. |
|
|
orig_shape (tuple): Original image size, in the format (height, width). |
|
|
|
|
|
Attributes: |
|
|
boxes (torch.Tensor) or (numpy.ndarray): The detection boxes with shape (num_boxes, 6). |
|
|
orig_shape (torch.Tensor) or (numpy.ndarray): Original image size, in the format (height, width). |
|
|
is_track (bool): True if the boxes also include track IDs, False otherwise. |
|
|
|
|
|
Properties: |
|
|
xyxy (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format. |
|
|
conf (torch.Tensor) or (numpy.ndarray): The confidence values of the boxes. |
|
|
cls (torch.Tensor) or (numpy.ndarray): The class values of the boxes. |
|
|
id (torch.Tensor) or (numpy.ndarray): The track IDs of the boxes (if available). |
|
|
xywh (torch.Tensor) or (numpy.ndarray): The boxes in xywh format. |
|
|
xyxyn (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format normalized by original image size. |
|
|
xywhn (torch.Tensor) or (numpy.ndarray): The boxes in xywh format normalized by original image size. |
|
|
data (torch.Tensor): The raw bboxes tensor |
|
|
|
|
|
Methods: |
|
|
cpu(): Move the object to CPU memory. |
|
|
numpy(): Convert the object to a numpy array. |
|
|
cuda(): Move the object to CUDA memory. |
|
|
to(*args, **kwargs): Move the object to the specified device. |
|
|
pandas(): Convert the object to a pandas DataFrame (not yet implemented). |
|
|
""" |
|
|
|
|
|
def __init__(self, boxes, orig_shape) -> None: |
|
|
"""Initialize the Boxes class.""" |
|
|
if boxes.ndim == 1: |
|
|
boxes = boxes[None, :] |
|
|
n = boxes.shape[-1] |
|
|
assert n in (6, 7), f'expected `n` in [6, 7], but got {n}' # xyxy, (track_id), conf, cls |
|
|
super().__init__(boxes, orig_shape) |
|
|
self.is_track = n == 7 |
|
|
self.orig_shape = torch.as_tensor(orig_shape, device=boxes.device) if isinstance(boxes, torch.Tensor) \ |
|
|
else np.asarray(orig_shape) |
|
|
|
|
|
@property |
|
|
def xyxy(self): |
|
|
"""Return the boxes in xyxy format.""" |
|
|
return self.data[:, :4] |
|
|
|
|
|
@property |
|
|
def conf(self): |
|
|
"""Return the confidence values of the boxes.""" |
|
|
return self.data[:, -2] |
|
|
|
|
|
@property |
|
|
def cls(self): |
|
|
"""Return the class values of the boxes.""" |
|
|
return self.data[:, -1] |
|
|
|
|
|
@property |
|
|
def id(self): |
|
|
"""Return the track IDs of the boxes (if available).""" |
|
|
return self.data[:, -3] if self.is_track else None |
|
|
|
|
|
@property |
|
|
@lru_cache(maxsize=2) # maxsize 1 should suffice |
|
|
def xywh(self): |
|
|
"""Return the boxes in xywh format.""" |
|
|
return ops.xyxy2xywh(self.xyxy) |
|
|
|
|
|
@property |
|
|
@lru_cache(maxsize=2) |
|
|
def xyxyn(self): |
|
|
"""Return the boxes in xyxy format normalized by original image size.""" |
|
|
return self.xyxy / self.orig_shape[[1, 0, 1, 0]] |
|
|
|
|
|
@property |
|
|
@lru_cache(maxsize=2) |
|
|
def xywhn(self): |
|
|
"""Return the boxes in xywh format normalized by original image size.""" |
|
|
return self.xywh / self.orig_shape[[1, 0, 1, 0]] |
|
|
|
|
|
@property |
|
|
def boxes(self): |
|
|
"""Return the raw bboxes tensor (deprecated).""" |
|
|
LOGGER.warning("WARNING ⚠️ 'Boxes.boxes' is deprecated. Use 'Boxes.data' instead.") |
|
|
return self.data |
|
|
|
|
|
|
|
|
class Masks(BaseTensor): |
|
|
""" |
|
|
A class for storing and manipulating detection masks. |
|
|
|
|
|
Args: |
|
|
masks (torch.Tensor): A tensor containing the detection masks, with shape (num_masks, height, width). |
|
|
orig_shape (tuple): Original image size, in the format (height, width). |
|
|
|
|
|
Attributes: |
|
|
masks (torch.Tensor): A tensor containing the detection masks, with shape (num_masks, height, width). |
|
|
orig_shape (tuple): Original image size, in the format (height, width). |
|
|
|
|
|
Properties: |
|
|
xy (list): A list of segments (pixels) which includes x, y segments of each detection. |
|
|
xyn (list): A list of segments (normalized) which includes x, y segments of each detection. |
|
|
|
|
|
Methods: |
|
|
cpu(): Returns a copy of the masks tensor on CPU memory. |
|
|
numpy(): Returns a copy of the masks tensor as a numpy array. |
|
|
cuda(): Returns a copy of the masks tensor on GPU memory. |
|
|
to(): Returns a copy of the masks tensor with the specified device and dtype. |
|
|
""" |
|
|
|
|
|
def __init__(self, masks, orig_shape) -> None: |
|
|
"""Initialize the Masks class.""" |
|
|
if masks.ndim == 2: |
|
|
masks = masks[None, :] |
|
|
super().__init__(masks, orig_shape) |
|
|
|
|
|
@property |
|
|
@lru_cache(maxsize=1) |
|
|
def segments(self): |
|
|
"""Return segments (deprecated; normalized).""" |
|
|
LOGGER.warning("WARNING ⚠️ 'Masks.segments' is deprecated. Use 'Masks.xyn' for segments (normalized) and " |
|
|
"'Masks.xy' for segments (pixels) instead.") |
|
|
return self.xyn |
|
|
|
|
|
@property |
|
|
@lru_cache(maxsize=1) |
|
|
def xyn(self): |
|
|
"""Return segments (normalized).""" |
|
|
return [ |
|
|
ops.scale_coords(self.data.shape[1:], x, self.orig_shape, normalize=True) |
|
|
for x in ops.masks2segments(self.data)] |
|
|
|
|
|
@property |
|
|
@lru_cache(maxsize=1) |
|
|
def xy(self): |
|
|
"""Return segments (pixels).""" |
|
|
return [ |
|
|
ops.scale_coords(self.data.shape[1:], x, self.orig_shape, normalize=False) |
|
|
for x in ops.masks2segments(self.data)] |
|
|
|
|
|
@property |
|
|
def masks(self): |
|
|
"""Return the raw masks tensor (deprecated).""" |
|
|
LOGGER.warning("WARNING ⚠️ 'Masks.masks' is deprecated. Use 'Masks.data' instead.") |
|
|
return self.data |
|
|
|
|
|
def pandas(self): |
|
|
"""Convert the object to a pandas DataFrame (not yet implemented).""" |
|
|
LOGGER.warning("WARNING ⚠️ 'Masks.pandas' method is not yet implemented.")
|
|
|
|