|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license |
|
|
|
|
|
import sys |
|
|
from pathlib import Path |
|
|
from typing import Union |
|
|
|
|
|
from ultralytics import yolo # noqa |
|
|
from ultralytics.nn.tasks import (ClassificationModel, DetectionModel, PoseModel, SegmentationModel, |
|
|
attempt_load_one_weight, guess_model_task, nn, yaml_model_load) |
|
|
from ultralytics.yolo.cfg import get_cfg |
|
|
from ultralytics.yolo.engine.exporter import Exporter |
|
|
from ultralytics.yolo.utils import (DEFAULT_CFG, DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, RANK, ROOT, callbacks, |
|
|
is_git_dir, yaml_load) |
|
|
from ultralytics.yolo.utils.checks import check_file, check_imgsz, check_pip_update_available, check_yaml |
|
|
from ultralytics.yolo.utils.downloads import GITHUB_ASSET_STEMS |
|
|
from ultralytics.yolo.utils.torch_utils import smart_inference_mode |
|
|
|
|
|
# Map head to model, trainer, validator, and predictor classes |
|
|
TASK_MAP = { |
|
|
'classify': [ |
|
|
ClassificationModel, yolo.v8.classify.ClassificationTrainer, yolo.v8.classify.ClassificationValidator, |
|
|
yolo.v8.classify.ClassificationPredictor], |
|
|
'detect': [ |
|
|
DetectionModel, yolo.v8.detect.DetectionTrainer, yolo.v8.detect.DetectionValidator, |
|
|
yolo.v8.detect.DetectionPredictor], |
|
|
'segment': [ |
|
|
SegmentationModel, yolo.v8.segment.SegmentationTrainer, yolo.v8.segment.SegmentationValidator, |
|
|
yolo.v8.segment.SegmentationPredictor], |
|
|
'pose': [PoseModel, yolo.v8.pose.PoseTrainer, yolo.v8.pose.PoseValidator, yolo.v8.pose.PosePredictor]} |
|
|
|
|
|
|
|
|
class YOLO: |
|
|
""" |
|
|
YOLO (You Only Look Once) object detection model. |
|
|
|
|
|
Args: |
|
|
model (str, Path): Path to the model file to load or create. |
|
|
task (Any, optional): Task type for the YOLO model. Defaults to None. |
|
|
|
|
|
Attributes: |
|
|
predictor (Any): The predictor object. |
|
|
model (Any): The model object. |
|
|
trainer (Any): The trainer object. |
|
|
task (str): The type of model task. |
|
|
ckpt (Any): The checkpoint object if the model loaded from *.pt file. |
|
|
cfg (str): The model configuration if loaded from *.yaml file. |
|
|
ckpt_path (str): The checkpoint file path. |
|
|
overrides (dict): Overrides for the trainer object. |
|
|
metrics (Any): The data for metrics. |
|
|
|
|
|
Methods: |
|
|
__call__(source=None, stream=False, **kwargs): |
|
|
Alias for the predict method. |
|
|
_new(cfg:str, verbose:bool=True) -> None: |
|
|
Initializes a new model and infers the task type from the model definitions. |
|
|
_load(weights:str, task:str='') -> None: |
|
|
Initializes a new model and infers the task type from the model head. |
|
|
_check_is_pytorch_model() -> None: |
|
|
Raises TypeError if the model is not a PyTorch model. |
|
|
reset() -> None: |
|
|
Resets the model modules. |
|
|
info(verbose:bool=False) -> None: |
|
|
Logs the model info. |
|
|
fuse() -> None: |
|
|
Fuses the model for faster inference. |
|
|
predict(source=None, stream=False, **kwargs) -> List[ultralytics.yolo.engine.results.Results]: |
|
|
Performs prediction using the YOLO model. |
|
|
|
|
|
Returns: |
|
|
list(ultralytics.yolo.engine.results.Results): The prediction results. |
|
|
""" |
|
|
|
|
|
def __init__(self, model: Union[str, Path] = 'yolov8n.pt', task=None) -> None: |
|
|
""" |
|
|
Initializes the YOLO model. |
|
|
|
|
|
Args: |
|
|
model (Union[str, Path], optional): Path or name of the model to load or create. Defaults to 'yolov8n.pt'. |
|
|
task (Any, optional): Task type for the YOLO model. Defaults to None. |
|
|
""" |
|
|
self.callbacks = callbacks.get_default_callbacks() |
|
|
self.predictor = None # reuse predictor |
|
|
self.model = None # model object |
|
|
self.trainer = None # trainer object |
|
|
self.task = None # task type |
|
|
self.ckpt = None # if loaded from *.pt |
|
|
self.cfg = None # if loaded from *.yaml |
|
|
self.ckpt_path = None |
|
|
self.overrides = {} # overrides for trainer object |
|
|
self.metrics = None # validation/training metrics |
|
|
self.session = None # HUB session |
|
|
model = str(model).strip() # strip spaces |
|
|
|
|
|
# Check if Ultralytics HUB model from https://hub.ultralytics.com |
|
|
if self.is_hub_model(model): |
|
|
from ultralytics.hub.session import HUBTrainingSession |
|
|
self.session = HUBTrainingSession(model) |
|
|
model = self.session.model_file |
|
|
|
|
|
# Load or create new YOLO model |
|
|
suffix = Path(model).suffix |
|
|
if not suffix and Path(model).stem in GITHUB_ASSET_STEMS: |
|
|
model, suffix = Path(model).with_suffix('.pt'), '.pt' # add suffix, i.e. yolov8n -> yolov8n.pt |
|
|
if suffix == '.yaml': |
|
|
self._new(model, task) |
|
|
else: |
|
|
self._load(model, task) |
|
|
|
|
|
def __call__(self, source=None, stream=False, **kwargs): |
|
|
"""Calls the 'predict' function with given arguments to perform object detection.""" |
|
|
return self.predict(source, stream, **kwargs) |
|
|
|
|
|
def __getattr__(self, attr): |
|
|
"""Raises error if object has no requested attribute.""" |
|
|
name = self.__class__.__name__ |
|
|
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}") |
|
|
|
|
|
@staticmethod |
|
|
def is_hub_model(model): |
|
|
"""Check if the provided model is a HUB model.""" |
|
|
return any(( |
|
|
model.startswith('https://hub.ultra'), # i.e. https://hub.ultralytics.com/models/MODEL_ID |
|
|
[len(x) for x in model.split('_')] == [42, 20], # APIKEY_MODELID |
|
|
len(model) == 20 and not Path(model).exists() and all(x not in model for x in './\\'))) # MODELID |
|
|
|
|
|
def _new(self, cfg: str, task=None, verbose=True): |
|
|
""" |
|
|
Initializes a new model and infers the task type from the model definitions. |
|
|
|
|
|
Args: |
|
|
cfg (str): model configuration file |
|
|
task (str) or (None): model task |
|
|
verbose (bool): display model info on load |
|
|
""" |
|
|
cfg_dict = yaml_model_load(cfg) |
|
|
self.cfg = cfg |
|
|
self.task = task or guess_model_task(cfg_dict) |
|
|
self.model = TASK_MAP[self.task][0](cfg_dict, verbose=verbose and RANK == -1) # build model |
|
|
self.overrides['model'] = self.cfg |
|
|
|
|
|
# Below added to allow export from yamls |
|
|
args = {**DEFAULT_CFG_DICT, **self.overrides} # combine model and default args, preferring model args |
|
|
self.model.args = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS} # attach args to model |
|
|
self.model.task = self.task |
|
|
|
|
|
def _load(self, weights: str, task=None): |
|
|
""" |
|
|
Initializes a new model and infers the task type from the model head. |
|
|
|
|
|
Args: |
|
|
weights (str): model checkpoint to be loaded |
|
|
task (str) or (None): model task |
|
|
""" |
|
|
suffix = Path(weights).suffix |
|
|
if suffix == '.pt': |
|
|
self.model, self.ckpt = attempt_load_one_weight(weights) |
|
|
self.task = self.model.args['task'] |
|
|
self.overrides = self.model.args = self._reset_ckpt_args(self.model.args) |
|
|
self.ckpt_path = self.model.pt_path |
|
|
else: |
|
|
weights = check_file(weights) |
|
|
self.model, self.ckpt = weights, None |
|
|
self.task = task or guess_model_task(weights) |
|
|
self.ckpt_path = weights |
|
|
self.overrides['model'] = weights |
|
|
self.overrides['task'] = self.task |
|
|
|
|
|
def _check_is_pytorch_model(self): |
|
|
""" |
|
|
Raises TypeError is model is not a PyTorch model |
|
|
""" |
|
|
pt_str = isinstance(self.model, (str, Path)) and Path(self.model).suffix == '.pt' |
|
|
pt_module = isinstance(self.model, nn.Module) |
|
|
if not (pt_module or pt_str): |
|
|
raise TypeError(f"model='{self.model}' must be a *.pt PyTorch model, but is a different type. " |
|
|
f'PyTorch models can be used to train, val, predict and export, i.e. ' |
|
|
f"'yolo export model=yolov8n.pt', but exported formats like ONNX, TensorRT etc. only " |
|
|
f"support 'predict' and 'val' modes, i.e. 'yolo predict model=yolov8n.onnx'.") |
|
|
|
|
|
@smart_inference_mode() |
|
|
def reset_weights(self): |
|
|
""" |
|
|
Resets the model modules parameters to randomly initialized values, losing all training information. |
|
|
""" |
|
|
self._check_is_pytorch_model() |
|
|
for m in self.model.modules(): |
|
|
if hasattr(m, 'reset_parameters'): |
|
|
m.reset_parameters() |
|
|
for p in self.model.parameters(): |
|
|
p.requires_grad = True |
|
|
return self |
|
|
|
|
|
@smart_inference_mode() |
|
|
def load(self, weights='yolov8n.pt'): |
|
|
""" |
|
|
Transfers parameters with matching names and shapes from 'weights' to model. |
|
|
""" |
|
|
self._check_is_pytorch_model() |
|
|
if isinstance(weights, (str, Path)): |
|
|
weights, self.ckpt = attempt_load_one_weight(weights) |
|
|
self.model.load(weights) |
|
|
return self |
|
|
|
|
|
def info(self, verbose=True): |
|
|
""" |
|
|
Logs model info. |
|
|
|
|
|
Args: |
|
|
verbose (bool): Controls verbosity. |
|
|
""" |
|
|
self._check_is_pytorch_model() |
|
|
self.model.info(verbose=verbose) |
|
|
|
|
|
def fuse(self): |
|
|
"""Fuse PyTorch Conv2d and BatchNorm2d layers.""" |
|
|
self._check_is_pytorch_model() |
|
|
self.model.fuse() |
|
|
|
|
|
@smart_inference_mode() |
|
|
def predict(self, source=None, stream=False, **kwargs): |
|
|
""" |
|
|
Perform prediction using the YOLO model. |
|
|
|
|
|
Args: |
|
|
source (str | int | PIL | np.ndarray): The source of the image to make predictions on. |
|
|
Accepts all source types accepted by the YOLO model. |
|
|
stream (bool): Whether to stream the predictions or not. Defaults to False. |
|
|
**kwargs : Additional keyword arguments passed to the predictor. |
|
|
Check the 'configuration' section in the documentation for all available options. |
|
|
|
|
|
Returns: |
|
|
(List[ultralytics.yolo.engine.results.Results]): The prediction results. |
|
|
""" |
|
|
if source is None: |
|
|
source = ROOT / 'assets' if is_git_dir() else 'https://ultralytics.com/images/bus.jpg' |
|
|
LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using 'source={source}'.") |
|
|
is_cli = (sys.argv[0].endswith('yolo') or sys.argv[0].endswith('ultralytics')) and any( |
|
|
x in sys.argv for x in ('predict', 'track', 'mode=predict', 'mode=track')) |
|
|
overrides = self.overrides.copy() |
|
|
overrides['conf'] = 0.25 |
|
|
overrides.update(kwargs) # prefer kwargs |
|
|
overrides['mode'] = kwargs.get('mode', 'predict') |
|
|
assert overrides['mode'] in ['track', 'predict'] |
|
|
if not is_cli: |
|
|
overrides['save'] = kwargs.get('save', False) # do not save by default if called in Python |
|
|
if not self.predictor: |
|
|
self.task = overrides.get('task') or self.task |
|
|
self.predictor = TASK_MAP[self.task][3](overrides=overrides, _callbacks=self.callbacks) |
|
|
self.predictor.setup_model(model=self.model, verbose=is_cli) |
|
|
else: # only update args if predictor is already setup |
|
|
self.predictor.args = get_cfg(self.predictor.args, overrides) |
|
|
return self.predictor.predict_cli(source=source) if is_cli else self.predictor(source=source, stream=stream) |
|
|
|
|
|
def track(self, source=None, stream=False, persist=False, **kwargs): |
|
|
""" |
|
|
Perform object tracking on the input source using the registered trackers. |
|
|
|
|
|
Args: |
|
|
source (str, optional): The input source for object tracking. Can be a file path or a video stream. |
|
|
stream (bool, optional): Whether the input source is a video stream. Defaults to False. |
|
|
persist (bool, optional): Whether to persist the trackers if they already exist. Defaults to False. |
|
|
**kwargs (optional): Additional keyword arguments for the tracking process. |
|
|
|
|
|
Returns: |
|
|
(List[ultralytics.yolo.engine.results.Results]): The tracking results. |
|
|
|
|
|
""" |
|
|
if not hasattr(self.predictor, 'trackers'): |
|
|
from ultralytics.tracker import register_tracker |
|
|
register_tracker(self, persist) |
|
|
# ByteTrack-based method needs low confidence predictions as input |
|
|
conf = kwargs.get('conf') or 0.1 |
|
|
kwargs['conf'] = conf |
|
|
kwargs['mode'] = 'track' |
|
|
return self.predict(source=source, stream=stream, **kwargs) |
|
|
|
|
|
@smart_inference_mode() |
|
|
def val(self, data=None, **kwargs): |
|
|
""" |
|
|
Validate a model on a given dataset. |
|
|
|
|
|
Args: |
|
|
data (str): The dataset to validate on. Accepts all formats accepted by yolo |
|
|
**kwargs : Any other args accepted by the validators. To see all args check 'configuration' section in docs |
|
|
""" |
|
|
overrides = self.overrides.copy() |
|
|
overrides['rect'] = True # rect batches as default |
|
|
overrides.update(kwargs) |
|
|
overrides['mode'] = 'val' |
|
|
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides) |
|
|
args.data = data or args.data |
|
|
if 'task' in overrides: |
|
|
self.task = args.task |
|
|
else: |
|
|
args.task = self.task |
|
|
if args.imgsz == DEFAULT_CFG.imgsz and not isinstance(self.model, (str, Path)): |
|
|
args.imgsz = self.model.args['imgsz'] # use trained imgsz unless custom value is passed |
|
|
args.imgsz = check_imgsz(args.imgsz, max_dim=1) |
|
|
|
|
|
validator = TASK_MAP[self.task][2](args=args, _callbacks=self.callbacks) |
|
|
validator(model=self.model) |
|
|
self.metrics = validator.metrics |
|
|
|
|
|
return validator.metrics |
|
|
|
|
|
@smart_inference_mode() |
|
|
def benchmark(self, **kwargs): |
|
|
""" |
|
|
Benchmark a model on all export formats. |
|
|
|
|
|
Args: |
|
|
**kwargs : Any other args accepted by the validators. To see all args check 'configuration' section in docs |
|
|
""" |
|
|
self._check_is_pytorch_model() |
|
|
from ultralytics.yolo.utils.benchmarks import benchmark |
|
|
overrides = self.model.args.copy() |
|
|
overrides.update(kwargs) |
|
|
overrides['mode'] = 'benchmark' |
|
|
overrides = {**DEFAULT_CFG_DICT, **overrides} # fill in missing overrides keys with defaults |
|
|
return benchmark(model=self, imgsz=overrides['imgsz'], half=overrides['half'], device=overrides['device']) |
|
|
|
|
|
def export(self, **kwargs): |
|
|
""" |
|
|
Export model. |
|
|
|
|
|
Args: |
|
|
**kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs |
|
|
""" |
|
|
self._check_is_pytorch_model() |
|
|
overrides = self.overrides.copy() |
|
|
overrides.update(kwargs) |
|
|
overrides['mode'] = 'export' |
|
|
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides) |
|
|
args.task = self.task |
|
|
if args.imgsz == DEFAULT_CFG.imgsz: |
|
|
args.imgsz = self.model.args['imgsz'] # use trained imgsz unless custom value is passed |
|
|
if args.batch == DEFAULT_CFG.batch: |
|
|
args.batch = 1 # default to 1 if not modified |
|
|
return Exporter(overrides=args, _callbacks=self.callbacks)(model=self.model) |
|
|
|
|
|
def train(self, **kwargs): |
|
|
""" |
|
|
Trains the model on a given dataset. |
|
|
|
|
|
Args: |
|
|
**kwargs (Any): Any number of arguments representing the training configuration. |
|
|
""" |
|
|
self._check_is_pytorch_model() |
|
|
if self.session: # Ultralytics HUB session |
|
|
if any(kwargs): |
|
|
LOGGER.warning('WARNING ⚠️ using HUB training arguments, ignoring local training arguments.') |
|
|
kwargs = self.session.train_args |
|
|
check_pip_update_available() |
|
|
overrides = self.overrides.copy() |
|
|
overrides.update(kwargs) |
|
|
if kwargs.get('cfg'): |
|
|
LOGGER.info(f"cfg file passed. Overriding default params with {kwargs['cfg']}.") |
|
|
overrides = yaml_load(check_yaml(kwargs['cfg'])) |
|
|
overrides['mode'] = 'train' |
|
|
if not overrides.get('data'): |
|
|
raise AttributeError("Dataset required but missing, i.e. pass 'data=coco128.yaml'") |
|
|
if overrides.get('resume'): |
|
|
overrides['resume'] = self.ckpt_path |
|
|
self.task = overrides.get('task') or self.task |
|
|
self.trainer = TASK_MAP[self.task][1](overrides=overrides, _callbacks=self.callbacks) |
|
|
if not overrides.get('resume'): # manually set model only if not resuming |
|
|
self.trainer.model = self.trainer.get_model(weights=self.model if self.ckpt else None, cfg=self.model.yaml) |
|
|
self.model = self.trainer.model |
|
|
self.trainer.hub_session = self.session # attach optional HUB session |
|
|
self.trainer.train() |
|
|
# Update model and cfg after training |
|
|
if RANK in (-1, 0): |
|
|
self.model, _ = attempt_load_one_weight(str(self.trainer.best)) |
|
|
self.overrides = self.model.args |
|
|
self.metrics = getattr(self.trainer.validator, 'metrics', None) # TODO: no metrics returned by DDP |
|
|
|
|
|
def to(self, device): |
|
|
""" |
|
|
Sends the model to the given device. |
|
|
|
|
|
Args: |
|
|
device (str): device |
|
|
""" |
|
|
self._check_is_pytorch_model() |
|
|
self.model.to(device) |
|
|
|
|
|
def tune(self, |
|
|
data: str, |
|
|
space: dict = None, |
|
|
grace_period: int = 10, |
|
|
gpu_per_trial: int = None, |
|
|
max_samples: int = 10, |
|
|
train_args: dict = {}): |
|
|
""" |
|
|
Runs hyperparameter tuning using Ray Tune. |
|
|
|
|
|
Args: |
|
|
data (str): The dataset to run the tuner on. |
|
|
space (dict, optional): The hyperparameter search space. Defaults to None. |
|
|
grace_period (int, optional): The grace period in epochs of the ASHA scheduler. Defaults to 10. |
|
|
gpu_per_trial (int, optional): The number of GPUs to allocate per trial. Defaults to None. |
|
|
max_samples (int, optional): The maximum number of trials to run. Defaults to 10. |
|
|
train_args (dict, optional): Additional arguments to pass to the `train()` method. Defaults to {}. |
|
|
|
|
|
Returns: |
|
|
(dict): A dictionary containing the results of the hyperparameter search. |
|
|
|
|
|
Raises: |
|
|
ModuleNotFoundError: If Ray Tune is not installed. |
|
|
""" |
|
|
|
|
|
try: |
|
|
from ultralytics.yolo.utils.tuner import (ASHAScheduler, RunConfig, WandbLoggerCallback, default_space, |
|
|
task_metric_map, tune) |
|
|
except ImportError: |
|
|
raise ModuleNotFoundError("Install Ray Tune: `pip install 'ray[tune]'`") |
|
|
|
|
|
try: |
|
|
import wandb |
|
|
from wandb import __version__ # noqa |
|
|
except ImportError: |
|
|
wandb = False |
|
|
|
|
|
def _tune(config): |
|
|
""" |
|
|
Trains the YOLO model with the specified hyperparameters and additional arguments. |
|
|
|
|
|
Args: |
|
|
config (dict): A dictionary of hyperparameters to use for training. |
|
|
|
|
|
Returns: |
|
|
None. |
|
|
""" |
|
|
self._reset_callbacks() |
|
|
config.update(train_args) |
|
|
self.train(**config) |
|
|
|
|
|
if not space: |
|
|
LOGGER.warning('WARNING: search space not provided. Using default search space') |
|
|
space = default_space |
|
|
|
|
|
space['data'] = data |
|
|
|
|
|
# Define the trainable function with allocated resources |
|
|
trainable_with_resources = tune.with_resources(_tune, {'cpu': 8, 'gpu': gpu_per_trial if gpu_per_trial else 0}) |
|
|
|
|
|
# Define the ASHA scheduler for hyperparameter search |
|
|
asha_scheduler = ASHAScheduler(time_attr='epoch', |
|
|
metric=task_metric_map[self.task], |
|
|
mode='max', |
|
|
max_t=train_args.get('epochs') or 100, |
|
|
grace_period=grace_period, |
|
|
reduction_factor=3) |
|
|
|
|
|
# Define the callbacks for the hyperparameter search |
|
|
tuner_callbacks = [WandbLoggerCallback(project='yolov8_tune') if wandb else None] |
|
|
|
|
|
# Create the Ray Tune hyperparameter search tuner |
|
|
tuner = tune.Tuner(trainable_with_resources, |
|
|
param_space=space, |
|
|
tune_config=tune.TuneConfig(scheduler=asha_scheduler, num_samples=max_samples), |
|
|
run_config=RunConfig(callbacks=tuner_callbacks, local_dir='./runs')) |
|
|
|
|
|
# Run the hyperparameter search |
|
|
tuner.fit() |
|
|
|
|
|
# Return the results of the hyperparameter search |
|
|
return tuner.get_results() |
|
|
|
|
|
@property |
|
|
def names(self): |
|
|
"""Returns class names of the loaded model.""" |
|
|
return self.model.names if hasattr(self.model, 'names') else None |
|
|
|
|
|
@property |
|
|
def device(self): |
|
|
"""Returns device if PyTorch model.""" |
|
|
return next(self.model.parameters()).device if isinstance(self.model, nn.Module) else None |
|
|
|
|
|
@property |
|
|
def transforms(self): |
|
|
"""Returns transform of the loaded model.""" |
|
|
return self.model.transforms if hasattr(self.model, 'transforms') else None |
|
|
|
|
|
def add_callback(self, event: str, func): |
|
|
"""Add a callback.""" |
|
|
self.callbacks[event].append(func) |
|
|
|
|
|
def clear_callback(self, event: str): |
|
|
"""Clear all event callbacks.""" |
|
|
self.callbacks[event] = [] |
|
|
|
|
|
@staticmethod |
|
|
def _reset_ckpt_args(args): |
|
|
"""Reset arguments when loading a PyTorch model.""" |
|
|
include = {'imgsz', 'data', 'task', 'single_cls'} # only remember these arguments when loading a PyTorch model |
|
|
return {k: v for k, v in args.items() if k in include} |
|
|
|
|
|
def _reset_callbacks(self): |
|
|
"""Reset all registered callbacks.""" |
|
|
for event in callbacks.default_callbacks.keys(): |
|
|
self.callbacks[event] = [callbacks.default_callbacks[event][0]]
|
|
|
|