You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

240 lines
12 KiB

# Ultralytics YOLO 🚀, AGPL-3.0 license
"""
This module provides functionalities for hyperparameter tuning of the Ultralytics YOLO models for object detection,
instance segmentation, image classification, pose estimation, and multi-object tracking.
Hyperparameter tuning is the process of systematically searching for the optimal set of hyperparameters
that yield the best model performance. This is particularly crucial in deep learning models like YOLO,
where small changes in hyperparameters can lead to significant differences in model accuracy and efficiency.
Example:
Tune hyperparameters for YOLOv8n on COCO8 at imgsz=640 and epochs=30 for 300 tuning iterations.
```python
from ultralytics import YOLO
model = YOLO('yolov8n.pt')
model.tune(data='coco8.yaml', epochs=10, iterations=300, optimizer='AdamW', plots=False, save=False, val=False)
```
"""
import random
import shutil
import subprocess
import time
import numpy as np
import torch
from ultralytics.cfg import get_cfg, get_save_dir
from ultralytics.utils import DEFAULT_CFG, LOGGER, callbacks, colorstr, remove_colorstr, yaml_print, yaml_save
from ultralytics.utils.plotting import plot_tune_results
class Tuner:
"""
Class responsible for hyperparameter tuning of YOLO models.
The class evolves YOLO model hyperparameters over a given number of iterations
by mutating them according to the search space and retraining the model to evaluate their performance.
Attributes:
space (dict): Hyperparameter search space containing bounds and scaling factors for mutation.
tune_dir (Path): Directory where evolution logs and results will be saved.
tune_csv (Path): Path to the CSV file where evolution logs are saved.
Methods:
_mutate(hyp: dict) -> dict:
Mutates the given hyperparameters within the bounds specified in `self.space`.
__call__():
Executes the hyperparameter evolution across multiple iterations.
Example:
Tune hyperparameters for YOLOv8n on COCO8 at imgsz=640 and epochs=30 for 300 tuning iterations.
```python
from ultralytics import YOLO
model = YOLO('yolov8n.pt')
model.tune(data='coco8.yaml', epochs=10, iterations=300, optimizer='AdamW', plots=False, save=False, val=False)
```
Tune with custom search space.
```python
from ultralytics import YOLO
model = YOLO('yolov8n.pt')
model.tune(space={key1: val1, key2: val2}) # custom search space dictionary
```
"""
def __init__(self, args=DEFAULT_CFG, _callbacks=None):
"""
Initialize the Tuner with configurations.
Args:
args (dict, optional): Configuration for hyperparameter evolution.
"""
self.space = args.pop("space", None) or { # key: (min, max, gain(optional))
# 'optimizer': tune.choice(['SGD', 'Adam', 'AdamW', 'NAdam', 'RAdam', 'RMSProp']),
"lr0": (1e-5, 1e-1), # initial learning rate (i.e. SGD=1E-2, Adam=1E-3)
"lrf": (0.0001, 0.1), # final OneCycleLR learning rate (lr0 * lrf)
"momentum": (0.7, 0.98, 0.3), # SGD momentum/Adam beta1
"weight_decay": (0.0, 0.001), # optimizer weight decay 5e-4
"warmup_epochs": (0.0, 5.0), # warmup epochs (fractions ok)
"warmup_momentum": (0.0, 0.95), # warmup initial momentum
"box": (1.0, 20.0), # box loss gain
"cls": (0.2, 4.0), # cls loss gain (scale with pixels)
"dfl": (0.4, 6.0), # dfl loss gain
"hsv_h": (0.0, 0.1), # image HSV-Hue augmentation (fraction)
"hsv_s": (0.0, 0.9), # image HSV-Saturation augmentation (fraction)
"hsv_v": (0.0, 0.9), # image HSV-Value augmentation (fraction)
"degrees": (0.0, 45.0), # image rotation (+/- deg)
"translate": (0.0, 0.9), # image translation (+/- fraction)
"scale": (0.0, 0.95), # image scale (+/- gain)
"shear": (0.0, 10.0), # image shear (+/- deg)
"perspective": (0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
"flipud": (0.0, 1.0), # image flip up-down (probability)
"fliplr": (0.0, 1.0), # image flip left-right (probability)
"mosaic": (0.0, 1.0), # image mixup (probability)
"mixup": (0.0, 1.0), # image mixup (probability)
"copy_paste": (0.0, 1.0), # segment copy-paste (probability)
}
self.args = get_cfg(overrides=args)
self.tune_dir = get_save_dir(self.args, name="tune")
self.tune_csv = self.tune_dir / "tune_results.csv"
self.callbacks = _callbacks or callbacks.get_default_callbacks()
self.prefix = colorstr("Tuner: ")
callbacks.add_integration_callbacks(self)
LOGGER.info(
f"{self.prefix}Initialized Tuner instance with 'tune_dir={self.tune_dir}'\n"
f"{self.prefix}💡 Learn about tuning at https://docs.ultralytics.com/guides/hyperparameter-tuning"
)
def _mutate(self, parent="single", n=5, mutation=0.8, sigma=0.2):
"""
Mutates the hyperparameters based on bounds and scaling factors specified in `self.space`.
Args:
parent (str): Parent selection method: 'single' or 'weighted'.
n (int): Number of parents to consider.
mutation (float): Probability of a parameter mutation in any given iteration.
sigma (float): Standard deviation for Gaussian random number generator.
Returns:
(dict): A dictionary containing mutated hyperparameters.
"""
if self.tune_csv.exists(): # if CSV file exists: select best hyps and mutate
# Select parent(s)
x = np.loadtxt(self.tune_csv, ndmin=2, delimiter=",", skiprows=1)
fitness = x[:, 0] # first column
n = min(n, len(x)) # number of previous results to consider
x = x[np.argsort(-fitness)][:n] # top n mutations
w = x[:, 0] - x[:, 0].min() + 1e-6 # weights (sum > 0)
if parent == "single" or len(x) == 1:
# x = x[random.randint(0, n - 1)] # random selection
x = x[random.choices(range(n), weights=w)[0]] # weighted selection
elif parent == "weighted":
x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
# Mutate
r = np.random # method
r.seed(int(time.time()))
g = np.array([v[2] if len(v) == 3 else 1.0 for k, v in self.space.items()]) # gains 0-1
ng = len(self.space)
v = np.ones(ng)
while all(v == 1): # mutate until a change occurs (prevent duplicates)
v = (g * (r.random(ng) < mutation) * r.randn(ng) * r.random() * sigma + 1).clip(0.3, 3.0)
hyp = {k: float(x[i + 1] * v[i]) for i, k in enumerate(self.space.keys())}
else:
hyp = {k: getattr(self.args, k) for k in self.space.keys()}
# Constrain to limits
for k, v in self.space.items():
hyp[k] = max(hyp[k], v[0]) # lower limit
hyp[k] = min(hyp[k], v[1]) # upper limit
hyp[k] = round(hyp[k], 5) # significant digits
return hyp
def __call__(self, model=None, iterations=10, cleanup=True):
"""
Executes the hyperparameter evolution process when the Tuner instance is called.
This method iterates through the number of iterations, performing the following steps in each iteration:
1. Load the existing hyperparameters or initialize new ones.
2. Mutate the hyperparameters using the `mutate` method.
3. Train a YOLO model with the mutated hyperparameters.
4. Log the fitness score and mutated hyperparameters to a CSV file.
Args:
model (Model): A pre-initialized YOLO model to be used for training.
iterations (int): The number of generations to run the evolution for.
cleanup (bool): Whether to delete iteration weights to reduce storage space used during tuning.
Note:
The method utilizes the `self.tune_csv` Path object to read and log hyperparameters and fitness scores.
Ensure this path is set correctly in the Tuner instance.
"""
t0 = time.time()
best_save_dir, best_metrics = None, None
(self.tune_dir / "weights").mkdir(parents=True, exist_ok=True)
for i in range(iterations):
# Mutate hyperparameters
mutated_hyp = self._mutate()
LOGGER.info(f"{self.prefix}Starting iteration {i + 1}/{iterations} with hyperparameters: {mutated_hyp}")
metrics = {}
train_args = {**vars(self.args), **mutated_hyp}
save_dir = get_save_dir(get_cfg(train_args))
weights_dir = save_dir / "weights"
ckpt_file = weights_dir / ("best.pt" if (weights_dir / "best.pt").exists() else "last.pt")
try:
# Train YOLO model with mutated hyperparameters (run in subprocess to avoid dataloader hang)
cmd = ["yolo", "train", *(f"{k}={v}" for k, v in train_args.items())]
return_code = subprocess.run(cmd, check=True).returncode
metrics = torch.load(ckpt_file)["train_metrics"]
assert return_code == 0, "training failed"
except Exception as e:
LOGGER.warning(f"WARNING ❌ training failure for hyperparameter tuning iteration {i + 1}\n{e}")
# Save results and mutated_hyp to CSV
fitness = metrics.get("fitness", 0.0)
log_row = [round(fitness, 5)] + [mutated_hyp[k] for k in self.space.keys()]
headers = "" if self.tune_csv.exists() else (",".join(["fitness"] + list(self.space.keys())) + "\n")
with open(self.tune_csv, "a") as f:
f.write(headers + ",".join(map(str, log_row)) + "\n")
# Get best results
x = np.loadtxt(self.tune_csv, ndmin=2, delimiter=",", skiprows=1)
fitness = x[:, 0] # first column
best_idx = fitness.argmax()
best_is_current = best_idx == i
if best_is_current:
best_save_dir = save_dir
best_metrics = {k: round(v, 5) for k, v in metrics.items()}
for ckpt in weights_dir.glob("*.pt"):
shutil.copy2(ckpt, self.tune_dir / "weights")
elif cleanup:
shutil.rmtree(ckpt_file.parent) # remove iteration weights/ dir to reduce storage space
# Plot tune results
plot_tune_results(self.tune_csv)
# Save and print tune results
header = (
f'{self.prefix}{i + 1}/{iterations} iterations complete ✅ ({time.time() - t0:.2f}s)\n'
f'{self.prefix}Results saved to {colorstr("bold", self.tune_dir)}\n'
f'{self.prefix}Best fitness={fitness[best_idx]} observed at iteration {best_idx + 1}\n'
f'{self.prefix}Best fitness metrics are {best_metrics}\n'
f'{self.prefix}Best fitness model is {best_save_dir}\n'
f'{self.prefix}Best fitness hyperparameters are printed below.\n'
)
LOGGER.info("\n" + header)
data = {k: float(x[best_idx, i + 1]) for i, k in enumerate(self.space.keys())}
yaml_save(
self.tune_dir / "best_hyperparameters.yaml",
data=data,
header=remove_colorstr(header.replace(self.prefix, "# ")) + "\n",
)
yaml_print(self.tune_dir / "best_hyperparameters.yaml")