You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
99 lines
3.9 KiB
99 lines
3.9 KiB
# Ultralytics YOLO 🚀, GPL-3.0 license |
|
|
|
import hydra |
|
import torch |
|
|
|
from ultralytics.yolo.engine.predictor import BasePredictor |
|
from ultralytics.yolo.utils import DEFAULT_CONFIG, ROOT, ops |
|
from ultralytics.yolo.utils.checks import check_imgsz |
|
from ultralytics.yolo.utils.plotting import Annotator, colors, save_one_box |
|
|
|
|
|
class DetectionPredictor(BasePredictor): |
|
|
|
def get_annotator(self, img): |
|
return Annotator(img, line_width=self.args.line_thickness, example=str(self.model.names)) |
|
|
|
def preprocess(self, img): |
|
img = torch.from_numpy(img).to(self.model.device) |
|
img = img.half() if self.model.fp16 else img.float() # uint8 to fp16/32 |
|
img /= 255 # 0 - 255 to 0.0 - 1.0 |
|
return img |
|
|
|
def postprocess(self, preds, img, orig_img): |
|
preds = ops.non_max_suppression(preds, |
|
self.args.conf, |
|
self.args.iou, |
|
agnostic=self.args.agnostic_nms, |
|
max_det=self.args.max_det) |
|
|
|
for i, pred in enumerate(preds): |
|
shape = orig_img[i].shape if self.webcam else orig_img.shape |
|
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round() |
|
|
|
return preds |
|
|
|
def write_results(self, idx, preds, batch): |
|
p, im, im0 = batch |
|
log_string = "" |
|
if len(im.shape) == 3: |
|
im = im[None] # expand for batch dim |
|
self.seen += 1 |
|
im0 = im0.copy() |
|
if self.webcam: # batch_size >= 1 |
|
log_string += f'{idx}: ' |
|
frame = self.dataset.count |
|
else: |
|
frame = getattr(self.dataset, 'frame', 0) |
|
|
|
self.data_path = p |
|
# save_path = str(self.save_dir / p.name) # im.jpg |
|
self.txt_path = str(self.save_dir / 'labels' / p.stem) + ('' if self.dataset.mode == 'image' else f'_{frame}') |
|
log_string += '%gx%g ' % im.shape[2:] # print string |
|
self.annotator = self.get_annotator(im0) |
|
|
|
det = preds[idx] |
|
if len(det) == 0: |
|
return log_string |
|
for c in det[:, 5].unique(): |
|
n = (det[:, 5] == c).sum() # detections per class |
|
log_string += f"{n} {self.model.names[int(c)]}{'s' * (n > 1)}, " |
|
|
|
if self.return_outputs: |
|
self.output["det"] = det.cpu().numpy() |
|
|
|
# write |
|
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh |
|
for *xyxy, conf, cls in reversed(det): |
|
if self.args.save_txt: # Write to file |
|
xywh = (ops.xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh |
|
line = (cls, *xywh, conf) if self.args.save_conf else (cls, *xywh) # label format |
|
with open(f'{self.txt_path}.txt', 'a') as f: |
|
f.write(('%g ' * len(line)).rstrip() % line + '\n') |
|
|
|
if self.args.save or self.args.save_crop or self.args.show: # Add bbox to image |
|
c = int(cls) # integer class |
|
label = None if self.args.hide_labels else ( |
|
self.model.names[c] if self.args.hide_conf else f'{self.model.names[c]} {conf:.2f}') |
|
self.annotator.box_label(xyxy, label, color=colors(c, True)) |
|
if self.args.save_crop: |
|
imc = im0.copy() |
|
save_one_box(xyxy, |
|
imc, |
|
file=self.save_dir / 'crops' / self.model.model.names[c] / f'{self.data_path.stem}.jpg', |
|
BGR=True) |
|
|
|
return log_string |
|
|
|
|
|
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name) |
|
def predict(cfg): |
|
cfg.model = cfg.model or "yolov8n.pt" |
|
cfg.imgsz = check_imgsz(cfg.imgsz, min_dim=2) # check image size |
|
cfg.source = cfg.source if cfg.source is not None else ROOT / "assets" |
|
predictor = DetectionPredictor(cfg) |
|
predictor.predict_cli() |
|
|
|
|
|
if __name__ == "__main__": |
|
predict()
|
|
|