You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

69 lines
2.5 KiB

# Ultralytics YOLO 🚀, GPL-3.0 license
import hydra
import torch
from ultralytics.yolo.engine.predictor import BasePredictor
from ultralytics.yolo.utils import DEFAULT_CONFIG, ROOT
from ultralytics.yolo.utils.checks import check_imgsz
from ultralytics.yolo.utils.plotting import Annotator
class ClassificationPredictor(BasePredictor):
def get_annotator(self, img):
return Annotator(img, example=str(self.model.names), pil=True)
def preprocess(self, img):
img = torch.Tensor(img).to(self.model.device)
img = img.half() if self.model.fp16 else img.float() # uint8 to fp16/32
return img
def write_results(self, idx, preds, batch):
p, im, im0 = batch
log_string = ""
if len(im.shape) == 3:
im = im[None] # expand for batch dim
self.seen += 1
im0 = im0.copy()
if self.webcam: # batch_size >= 1
log_string += f'{idx}: '
frame = self.dataset.cound
else:
frame = getattr(self.dataset, 'frame', 0)
self.data_path = p
# save_path = str(self.save_dir / p.name) # im.jpg
self.txt_path = str(self.save_dir / 'labels' / p.stem) + ('' if self.dataset.mode == 'image' else f'_{frame}')
log_string += '%gx%g ' % im.shape[2:] # print string
self.annotator = self.get_annotator(im0)
prob = preds[idx].softmax(0)
if self.return_outputs:
self.output["prob"] = prob.cpu().numpy()
# Print results
top5i = prob.argsort(0, descending=True)[:5].tolist() # top 5 indices
log_string += f"{', '.join(f'{self.model.names[j]} {prob[j]:.2f}' for j in top5i)}, "
# write
text = '\n'.join(f'{prob[j]:.2f} {self.model.names[j]}' for j in top5i)
if self.args.save or self.args.show: # Add bbox to image
self.annotator.text((32, 32), text, txt_color=(255, 255, 255))
if self.args.save_txt: # Write to file
with open(f'{self.txt_path}.txt', 'a') as f:
f.write(text + '\n')
return log_string
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
def predict(cfg):
cfg.model = cfg.model or "yolov8n-cls.pt" # or "resnet18"
cfg.imgsz = check_imgsz(cfg.imgsz, min_dim=2) # check image size
cfg.source = cfg.source if cfg.source is not None else ROOT / "assets"
predictor = ClassificationPredictor(cfg)
predictor.predict_cli()
if __name__ == "__main__":
predict()